1
|
Gao W, Gao Y, Xu Y, Liang J, Sun Y, Zhang Y, Shan F, Ge J, Xia Q. Effect of duloxetine on changes in serum proinflammatory cytokine levels in patients with major depressive disorder. BMC Psychiatry 2024; 24:449. [PMID: 38877455 PMCID: PMC11179362 DOI: 10.1186/s12888-024-05910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/13/2024] [Indexed: 06/16/2024] Open
Abstract
OBJECTIVE Accumulating evidence supports the idea that inflammation may contribute to the pathophysiology of major depressive disorder (MDD). Duloxetine, a serotonin-norepinephrine reuptake inhibitor, exhibits anti-inflammatory effects both in vitro and in vivo. In this study, we investigated the impact of duloxetine on changes in serum proinflammatory cytokine levels among individuals diagnosed with MDD. METHODS A cohort of 23 drug-naïve individuals diagnosed with MDD and 23 healthy controls were included in this study. The severity of depressive symptoms was evaluated using the 24-item Hamilton Depression Scale (HAMD-24). A panel of 7 proinflammatory cytokines, including interleukin-1β (IL-1β), IL-2, IL-6, IL-8, IL-12, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), were quantified using multiplex Luminex assays. The levels of serum cytokines in healthy controls and patients with MDD were compared at baseline. All patients received duloxetine at a dosage range of 40-60 mg/day for a duration of 4 weeks. The HAMD-24 scores and serum cytokine levels were compared before and after duloxetine treatment. RESULTS Compared with healthy controls, patients with MDD had significantly greater levels of IL-2, IL-6, IL-8, IL-12, TNF-α, and IFN-γ (P < 0.05). Moreover, there was a significant decrease in HAMD-24 scores observed pre- and post-treatment (t = 13.161, P < 0.001). Furthermore, after 4 weeks of treatment, the serum levels of IL-8 (t = 3.605, P = 0.002), IL-12 (t = 2.559, P = 0.018), and IFN-γ (t = 3.567, P = 0.002) decreased significantly. However, there were no significant differences in other cytokines, including IL-1β, IL-2, IL-6, and TNF-α, before and after treatment (P > 0.05). CONCLUSIONS These findings present compelling evidence, potentially for the first time, indicating that duloxetine treatment may effectively reduce the serum concentrations of IL-8, IL-12, and IFN-γ in individuals diagnosed with MDD. However, the precise mechanisms underlying this effect remain unclear and warrant further investigation.
Collapse
Affiliation(s)
- Wenfan Gao
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Yejun Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230000, PR China
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Yayun Xu
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Jun Liang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Yanhong Sun
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Yuanyuan Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Feng Shan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Jinfang Ge
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230000, PR China.
| | - Qingrong Xia
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230000, PR China.
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Joseph TP, Zhou F, Sai LY, Chen H, Lin SL, Schachner M. Duloxetine ameliorates valproic acid-induced hyperactivity, anxiety-like behavior, and social interaction deficits in zebrafish. Autism Res 2022; 15:27-41. [PMID: 34605202 DOI: 10.1002/aur.2620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023]
Abstract
Syndromic autism spectrum disorders (ASDs) are characterized by impaired social communication and repetitive/stereotyped behaviors. Currently available therapeutic agents against ASD have limited efficacy. Thus, searching for novel and effective drugs ameliorating core symptoms, in particular social deficits, is of utmost importance. Duloxetine (DLX), an antidepressant that has been identified as an agonist mimetic for the cell adhesion molecule L1, exhibits beneficial functions in vitro and in vivo. Therefore, in this study, we focused on the rapid and persistent neuroprotective function of DLX following valproic acid (VPA)-triggered hyperactivity, anxiety-like behavior and social deficits in zebrafish. Embryonic exposure to VPA reduced survival in a dose- and time-dependent manner, delayed hatching, and also resulted in a significant number of malformed larvae. After initial dose-response experiments in zebrafish larvae, 10 μM VPA exposure between 0.33 and 4.5 days post fertilization (dpf) was identified as an effective concentration that led to an early and persistent ASD-like phenotype in zebrafish. ASD-like elevated acetylcholine esterase (AChE) activity and reduced Akt-mTOR signaling was observed in zebrafish whole brain. Acute administration of DLX (4.5-6 dpf) reduced the VPA-induced ASD-like phenotype in zebrafish larvae. Additionally, such early-life acute DLX treatment had long-term effects in ameliorating social impairments, hyperactivity, and anxiety-like behaviors through adulthood. This was accompanied by reduced AChE activity and by normalized Akt-mTOR signaling. Overall, DLX treatment showed a long-term therapeutic effect on autistic-like behaviors, and alteration of AChE activity and Akt-mTOR signaling were identified as crucial in the VPA-induced ASD zebrafish model.
Collapse
Affiliation(s)
| | - Fang Zhou
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Liu Yang Sai
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Hanyu Chen
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center of Neuroscience, Shantou University Medical College, Shantou, China
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
3
|
Mun J, Jung J, Park C. Effects of cerebral hypoperfusion on the cerebral white matter: a meta‑analysis. Acta Neurobiol Exp (Wars) 2021; 81:295-306. [PMID: 34672300 DOI: 10.21307/ane-2021-029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Decreased cerebral blood flow (CBF) in aging is known to induce aging‑related cerebral deteriorations, such as neuronal degeneration, white matter (WM) alterations, and vascular deformations. However, the effects of cerebral hypoperfusion on WM alterations remain unclear. This study investigates the relationship between cerebral hypoperfusion and WM total volume changes by assessing the trends in CBF and WM changes by meta‑analysis. In this meta‑analysis, the differences in CBF were compared according to cerebral hypoperfusion type and the effect of cerebral hypoperfusion on the total volume of WM changes in rodents. Using subgroup analysis, 13 studies were evaluated for comparing CBF according to the type of cerebral hypoperfusion; 12 studies were evaluated for comparing the effects of cerebral hypoperfusion on the total volume of WM changes. Our meta‑analysis shows that the total volume of WM decreases with a decrease in CBF. However, the reduction in\r\nthe total volume of WM was greater in normal aging mice than in the cerebral hypoperfusion model mice. These results suggest that the reduction of cerebral WM volume during the aging process is affected by other factors in addition to a decrease in CBF.
Collapse
Affiliation(s)
- Juyeon Mun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chan Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea;
| |
Collapse
|
4
|
Yan N, Xu Z, Qu C, Zhang J. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway. Int Immunopharmacol 2021; 98:107844. [PMID: 34153667 DOI: 10.1016/j.intimp.2021.107844] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Cerebrovascular disease and its risk factors cause persistent decrease of cerebral blood flow, chronic cerebral hypoperfusion (CCH) is the major foundation of vascular cognitive impairment (VCI). The hippocampus is extremely vulnerable to cerebral ischemia and hypoxia. Oxidative stress and neuroinflammation injury are important pathophysiological mechanisms of this process, which is closely related to hippocampal neurons damage and loss. Dimethyl fumarate (DMF), an FDA-approved therapeutic for multiple sclerosis (MS), plays a protective role in multiple neurological disorders. Studies have shown that DMF exerts anti-inflammatory and antioxidant effects via the NRF2/ARE/NF-κB signaling pathway. Thus, this study aimed to evaluate the neuroprotective effect of DMF in the CCH rat model. Ferroptosis, a novel defined iron-dependent cell death form, were found to be strongly associated with the pathophysiology of CCH. Emerging evidences have shown that inhibition of ferroptosis by targeting NRF2 exerted neuroprotective effect in neurodegeneration diseases. We also investigated whether DMF can alleviate cognitive deficits through inhibition of ferroptosis by the NRF2 signaling pathway in this study. DMF was intragastric for consecutive five weeks (100 mg/kg/day). Then behavior test and histological, molecular, and biochemical analysis were performed. We found that DMF treatment significantly improved cognitive deficits and partially reversed hippocampus neuronal damage and loss caused by CCH. And DMF treatment decreased hippocampus IL-1β, TNF-α, and IL-6 pro-inflammatory cytokines concentration, and mediated the NF-κB signaling pathway. And DMF also alleviated hippocampus oxidative stress through reducing MDA, and increasing GSH and SOD levels, which are also closely associated with ferroptosis. Besides, DMF treatment reduced the expression of PTGS2, and increased the expression of FTH1 and xCT, and the iron content is also reduced, which were the important features related to ferroptosis. Furthermore, DMF activated the NRF2/ARE signaling pathway and upregulated the expression of HO-1, NQO1 and GPX4. These outcomes indicated that DMF can improve cognitive impairment in rats with CCH, possibly through alleviating neuroinflammation, oxidative stress damage and inhibiting ferroptosis of hippocampal neurons. Overall, our results provide new evidence for the neuroprotective role of DMF.
Collapse
Affiliation(s)
- Nao Yan
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Zhipeng Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Changhua Qu
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - JunJian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
5
|
Xu JJ, Guo S, Xue R, Xiao L, Kou JN, Liu YQ, Han JY, Fu JJ, Wei N. Adalimumab ameliorates memory impairments and neuroinflammation in chronic cerebral hypoperfusion rats. Aging (Albany NY) 2021; 13:14001-14014. [PMID: 34030135 PMCID: PMC8202885 DOI: 10.18632/aging.203009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 01/31/2023]
Abstract
Vascular dementia (VaD) is the second most common type of dementia worldwide. Although there are five FDA-approved drugs for the treatment of Alzheimer's disease (AD), none of them have been applied to treat VaD. Adalimumab is a TNF-α inhibitor that is used for the treatment of autoimmune diseases such as rheumatoid arthritis. In a recent retrospective case-control study, the application of adalimumab for rheumatoid or psoriasis was shown to decrease the risk of AD. However, whether adalimumab can be used for the treatment of VaD is not clear. In this study, we used 2VO surgery to generate a VaD rat model and treated the rats with adalimumab or vehicle. We demonstrated that VaD rats treated with adalimumab exhibited significant improvements in memory. In addition, adalimumab treatment significantly alleviated neuronal loss in the hippocampi of VaD rats. Moreover, adalimumab significantly reduced microglial activation and reversed M1/M2 polarization in VaD rats. Furthermore, adalimumab treatment suppressed the activity of NF-κB, an important neuroinflammatory transcription factor. Finally, adalimumab displayed a protective role against oxidative stress in VaD rats. Our results indicate that adalimumab may be applied for the treatment of human patients with VaD.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People’s Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou 450002, People’s Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Si Guo
- Department of Medical Laboratory, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, People’s Republic of China
- Department of Medical Laboratory of Central China Fuwai Hospital, Zhengzhou, Henan 450003, People’s Republic of China
- Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, People’s Republic of China
| | - Rui Xue
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Lin Xiao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People’s Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou 450002, People’s Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Jun-Na Kou
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People’s Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou 450002, People’s Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Yu-Qiong Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People’s Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou 450002, People’s Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Jun-Ya Han
- Department of Pathology, People’s Hospital of Zhengzhou, Zhengzhou 450000, People’s Republic of China
| | - Jing-Jie Fu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People’s Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou 450002, People’s Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| |
Collapse
|
6
|
Meejuru GF, Somavarapu A, Danduga RCSR, Nissankara Roa LS, Kola PK. Protective effects of duloxetine against chronic immobilisation stress-induced anxiety, depression, cognitive impairment and neurodegeneration in mice. J Pharm Pharmacol 2021; 73:522-534. [PMID: 33793839 DOI: 10.1093/jpp/rgaa003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/05/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVES This study aimed to evaluate the effect of duloxetine (10 and 20 mg/kg) against chronic immobilisation stress (CIS)-induced anxiety, depression, cognitive impairment and neurodegeneration in mice. METHODS CIS, 2 h/10 days (11:00 AM-1:00 PM) was applied after 30 min of pretreatment with saline, duloxetine 10 mg/kg and 20 mg/kg to the respective groups of animals, except the control group. Animals were examined for physiological (body weight, locomotion and grip strength), psychological (memory impairment, anxiety and depression), neurochemical (GABA and glutamate), biochemical (MDA, catalase, glutathione, superoxide dismutase) and histopathological changes. KEY FINDINGS CIS exposure revealed anxiety-like behaviour, depression-like behaviour, motor in-coordination and learning and memory impairment in mice. Besides, CIS induction decreased the antioxidant enzymes (GSH, SOD and catalase), GABA and the viable neuronal cell count, whereas CIS exposure significantly elevated the MDA, AChE activity and glutamate content in the cortex and hippocampus. Pretreatment with duloxetine10 and 20 mg/kg showed dose-dependent ameliorated effect against the CIS-induced alterations in mice. CONCLUSION In conclusion, the results of this study demonstrated the protective effect of duloxetine against neuropsychiatric symptoms, memory impairment caused by CIS-induction through inhibition of oxidative stress, AChE activity and glutamate release.
Collapse
Affiliation(s)
- Glory Florence Meejuru
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India
| | - Anushri Somavarapu
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India
| | - Ravi Chandra Sekhara Reddy Danduga
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India
| | | | - Phani Kumar Kola
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India
| |
Collapse
|
7
|
Wang JL, Wang Y, Gao TT, Liu L, Wang YJ, Guan W, Chen TT, Zhao J, Zhang Y, Jiang B. Venlafaxine protects against chronic stress-related behaviors in mice by activating the mTORC1 signaling cascade. J Affect Disord 2020; 276:525-536. [PMID: 32871684 DOI: 10.1016/j.jad.2020.07.096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recent studies have suggested the role of mammalian target of rapamycin complex 1 (mTORC1) in the pathophysiology of depression. Although venlafaxine was thought to be a serotonin and norepinephrine reuptake inhibitor (SNRI), its pharmacological mechanism remain elusive. In this study, the effects of venlafaxine on the mTORC1 system were studied in both chronic unpredictable mild stress (CUMS) and chronic social defeat stress (CSDS) models. METHOD First, we examined whether repeated venlafaxine treatment reversed the effects of CUMS and CSDS on the mTORC1 signaling cascade in both the hippocampus and medial prefrontal cortex (mPFC). Second, several selective pharmacological inhibitors of the mTORC1 system, including rapamycin, LY294002 and U0126, were used together to determine whether the protective effects of venlafaxine against the CUMS and CSDS models were prevented by mTORC1 system blockade. Finally, genetic knockdown of mTORC1 by mTORC1-shRNA was further adopted to test whether mTORC1 was necessary for the anti-stress effects of venlafaxine in mice. RESULT Our results showed that the decreasing effects of CUMS and CSDS on the mTORC1 signaling cascade in the hippocampus and mPFC were restored by venlafaxine, and the use of rapamycin, LY294002, U0126 and mTORC1-shRNA fully abolished the anti-stress actions of venlafaxine in mice. CONCLUSION The mTORC1 system is involved in the pharmacological mechanism of venlafaxine.
Collapse
Affiliation(s)
- Jin-Liang Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Yuan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ting-Ting Gao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ling Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ying-Jie Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ting-Ting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Jie Zhao
- Department of Pharmacy, The Sixth People's Hospital of Nantong, Nantong 226011, Jiangsu, China
| | - Yin Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China.
| |
Collapse
|
8
|
Baker JD, Uhrich RL, Strovas TJ, Saxton AD, Kraemer BC. Targeting Pathological Tau by Small Molecule Inhibition of the Poly(A):MSUT2 RNA-Protein Interaction. ACS Chem Neurosci 2020; 11:2277-2285. [PMID: 32589834 PMCID: PMC8629322 DOI: 10.1021/acschemneuro.0c00214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neurofibrillary tangles composed of aberrantly aggregating tau protein are a hallmark of Alzheimer's disease and related dementia disorders. Recent work has shown that mammalian suppressor of tauopathy 2 (MSUT2), also named ZC3H14 (Zinc Finger CCCH-Type Containing 14), controls accumulation of pathological tau in cultured human cells and mice. Knocking out MSUT2 protects neurons from neurodegenerative tauopathy and preserves learning and memory. MSUT2 protein functions to bind polyadenosine [poly(A)] tails of mRNA through its C-terminal CCCH type zinc finger domains, and loss of CCCH domain function suppresses tauopathy in Caenorhabditis elegans and mice. Thus, we hypothesized that inhibiting the poly(A):MSUT2 RNA-protein interaction would ameliorate pathological tau accumulation. Here we present a high-throughput screening method for the identification of small molecules inhibiting the poly(A):MSUT2 RNA-protein interaction. We employed a fluorescent polarization assay for initial small molecule discovery with the intention to repurpose hits identified from the NIH Clinical Collection (NIHCC). Our drug repurposing development workflow included validation of hits by dose-response analysis, specificity testing, orthogonal assays of activity, and cytotoxicity. Validated compounds passing through this screening funnel will be evaluated for translational effectiveness in future studies. This preclinical drug development pipeline identified diverse FDA approved drugs duloxetine, saquinavir, and clofazimine as potential repurposing candidates for reducing pathological tau accumulation.
Collapse
Affiliation(s)
- Jeremy D Baker
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington 98104, United States
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
| | - Rikki L Uhrich
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
| | - Timothy J Strovas
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
| | - Aleen D Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
| | - Brian C Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington 98104, United States
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195, United States
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
Shang J, Yamashita T, Zhai Y, Nakano Y, Morihara R, Li X, Tian F, Liu X, Huang Y, Shi X, Sato K, Takemoto M, Hishikawa N, Ohta Y, Abe K. Acceleration of NLRP3 inflammasome by chronic cerebral hypoperfusion in Alzheimer's disease model mouse. Neurosci Res 2018; 143:61-70. [PMID: 29885344 DOI: 10.1016/j.neures.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/27/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
Cerebral neuroinflammation defines a novel pathway for progressing Alzheimer's disease (AD) pathology. We investigated immunohistological changes of neuroinflammation with nucleotide-binding domain and leucine-rich repeat (NLR)-protein 3 (NLRP3), activated caspase-1 and interleukin-1 beta (IL-1β) in a novel AD (APP23) mice with chronic cerebral hypoperfusion (CCH) model from 4 months (M) of age, moreover, examined protective effect of galantamine. CCH strongly enhanced NLRP3, activated caspase-1 and IL-1β expressions in hippocampus and thalamus at age 12 M of AD mice. CCH also exaggerated amyloid-beta (Aβ) 40 depositions in cerebral cortex. Furthermore, CCH exacerbated a marked dissociation of neurovascular unit (NVU). These pathological changes were ameliorated by galantamine treatment. The present study demonstrated that CCH strongly enhanced primary AD pathology including neuroinflammation, Aβ accumulations and NVU dissociation in AD mice, which was greatly protected by an allosterically potentiating ligand galantamine.
Collapse
Affiliation(s)
- Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yun Zhai
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Xianghong Li
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Feng Tian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Xia Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yong Huang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Kota Sato
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan.
| |
Collapse
|
10
|
Engel DF, de Oliveira J, Lieberknecht V, Rodrigues ALS, de Bem AF, Gabilan NH. Duloxetine Protects Human Neuroblastoma Cells from Oxidative Stress-Induced Cell Death Through Akt/Nrf-2/HO-1 Pathway. Neurochem Res 2017; 43:387-396. [DOI: 10.1007/s11064-017-2433-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/20/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022]
|