1
|
Wang S, Dong Y, Zhai L, Bai Y, Yang Y, Jia L. Decreased Treg cells induced by bisphenol A is associated with up-regulation of PI3K/Akt/mTOR signaling pathway and Foxp3 DNA methylation in spleen of adolescent mice. CHEMOSPHERE 2024; 357:141957. [PMID: 38641296 DOI: 10.1016/j.chemosphere.2024.141957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
The current study aimed to explore whether bisphenol A (BPA) exposure aggravated the decrease in Tregs induced by ovalbumin (OVA) in adolescent female mouse models of asthma, and whether the process was associated with mTOR-mediated signaling pathways and DNA methylation levels. A total of 40 female C57BL/6 mice at the age of four weeks were used and divided into five groups after 1 week of domestication. Each group consisted of eight mice: the control group, OVA group, OVA + BPA (0.1 μg mL-1) group, OVA + BPA (0.2 μg mL-1) group, and OVA + BPA (0.4 μg mL-1) group. Results revealed that Foxp3 protein levels decreased in the spleens of mice exposed to BPA compared to those in the OVA group. After an elevation in BPA dose, the mRNAs of methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b) were gradually upregulated. The mechanism was related to the activity of TLR4/NF-κB and PI3K/Akt/mTOR signaling pathways and the enhancement of Foxp3 DNA methylation. Our results, collectively, provided a new view for studying the mechanisms underlying BPA exposure-induced immune dysfunction. Investigation of the regulatory mechanisms of DNA methylation in the abnormal Th immune response caused by BPA exposure could help reveal the causes and molecular mechanisms underlying the high incidence of allergic diseases in children in recent years.
Collapse
Affiliation(s)
- Simeng Wang
- Institute for International Health Professions Education and Research, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Youdan Dong
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110022, PR China.
| | - Lingling Zhai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Yinglong Bai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Yilong Yang
- Department of Health Policy and Management, School of Public Health, Hangzhou Normal University, NO. 2318 Yuhangtang Road, Yuhang District, Hangzhou, Zhejiang, 311121, PR China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
2
|
Ricker K, Cheng V, Hsieh CJ, Tsai FC, Osborne G, Li K, Yilmazer-Musa M, Sandy MS, Cogliano VJ, Schmitz R, Sun M. Application of the Key Characteristics of Carcinogens to Bisphenol A. Int J Toxicol 2024; 43:253-290. [PMID: 38204208 DOI: 10.1177/10915818231225161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The ten key characteristics (KCs) of carcinogens are based on characteristics of known human carcinogens and encompass many types of endpoints. We propose that an objective review of the large amount of cancer mechanistic evidence for the chemical bisphenol A (BPA) can be achieved through use of these KCs. A search on metabolic and mechanistic data relevant to the carcinogenicity of BPA was conducted and web-based software tools were used to screen and organize the results. We applied the KCs to systematically identify, organize, and summarize mechanistic information for BPA, and to bring relevant carcinogenic mechanisms into focus. For some KCs with very large data sets, we utilized reviews focused on specific endpoints. Over 3000 studies for BPA from various data streams (exposed humans, animals, in vitro and cell-free systems) were identified. Mechanistic data relevant to each of the ten KCs were identified, with receptor-mediated effects, epigenetic alterations, oxidative stress, and cell proliferation being especially data rich. Reactive and bioactive metabolites are also associated with a number of KCs. This review demonstrates how the KCs can be applied to evaluate mechanistic data, especially for data-rich chemicals. While individual entities may have different approaches for the incorporation of mechanistic data in cancer hazard identification, the KCs provide a practical framework for conducting an objective examination of the available mechanistic data without a priori assumptions on mode of action. This analysis of the mechanistic data available for BPA suggests multiple and inter-connected mechanisms through which this chemical can act.
Collapse
Affiliation(s)
- Karin Ricker
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vanessa Cheng
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Chingyi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meltem Yilmazer-Musa
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vincent J Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
3
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
4
|
Yoo MH, Lee SJ, Kim W, Kim Y, Kim YB, Moon KS, Lee BS. Bisphenol A impairs renal function by reducing Na +/K +-ATPase and F-actin expression, kidney tubule formation in vitro and in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114141. [PMID: 36206637 DOI: 10.1016/j.ecoenv.2022.114141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 05/26/2023]
Abstract
The kidney proximal tubule is responsible for reabsorbing water and NaCl to maintain the homeostasis of the body fluids, electrolytes, and nutrients. Thus, abnormal functioning of the renal proximal tubule can lead to life-threatening imbalances. Bisphenol A (BPA) has been used for decades as a representative chemical in household plastic products, but studies on its effects on the kidney proximal tubule are insufficient. In this study, immunocytochemical and cytotoxicity tests were performed using two- and three-dimensional human renal proximal tubular epithelial cell (hRPTEC) cultures to investigate the impact of low-dose BPA (1-10 μM) exposure. BPA was found to interfere with straight tubule formation as observed by low filamentous actin formation and reduced Na+/K+-ATPase expression in the tubules of hRPTEC 3D cultures. Similar results were observed in rat pup kidneys following oral administration of 250 mg/kg BPA. Moreover, the expression of HO-1 and 8-OHdG, key markers for oxidative stress, was increased in vitro and in vivo following BPA administration, whereas that of OAT1 and OAT, important transporters of the renal proximal tubules, was not altered. Overall, no-observed-adverse-effect-level (NOAEL)-dose BPA exposure can decrease renal function by promoting abnormal tubular formation both in vitro and in vivo. Therefore, we propose that although it does not exhibit life-threatening toxicity, exposure to low levels of BPA can negatively affect homeostasis in the body by means of long-term deterioration of renal proximal tubular function in humans.
Collapse
Affiliation(s)
- Min Heui Yoo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Seung-Jin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Woojin Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Younhee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Wang X, Gao M, Wang Z, Cui W, Zhang J, Zhang W, Xia Y, Wei B, Tang Y, Xu X. Hepatoprotective effects of oridonin against bisphenol A induced liver injury in rats via inhibiting the activity of xanthione oxidase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145301. [PMID: 33515877 DOI: 10.1016/j.scitotenv.2021.145301] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is widely used to manufacture packaging materials for various daily necessities and causes harmful effects in organs, especially liver injury, by generating oxidative stress. Oridonin, an active diterpenoid isolated from Rabdosia rubescens (Hemsl.) Hara, has been reported to possess a wide range of pharmacological activities including anti-inflammatory, antioxidative and antiapoptotic effects. However, the role of oridonin in BPA--induced liver injury and its potential protective mechanism have not been well characterized. In this research, we explored the metabolic alterations in the liver tissue of rats after exposure to BPA with or without pretreatment with oridonin for 14 days by metabolomics analysis based on UPLC-MS/MS. Rats were randomly divided into groups as follows: Control, Vehicle, Oridonin (10 mg/kg), Bisphenol A (500 mg/kg), bisphenol A + Oridonin (500 + 10 mg/kg), Bisphenol A + Diammonium glycyrrhizinate (500 + 40 mg/kg). The biochemical results showed that oridonin significantly reduced the levels of AST and ALT (P < 0.05), ameliorated the abnormal histopathological changes and reduced hepatic apoptosis compared with the BPA group. Furthermore, metabolomics results revealed that purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism were reprogrammed, based on 28 identified significant differential metabolites among the Vehicle, BPA and BPA + oridonin groups. In-depth studies demonstrated that pretreatment with oridonin may play a protective role by restoring BPA-induced changes in oxidative stress and the activity of oxidase (XOD) (P < 0.05). Additionally, oridonin could inhibit the activity of XOD by binding to it, therefore decreasing the reactive oxygen species (ROS) level, upregulating the content of hypoxanthine and xanthine, and reducing the level of uric acid in the liver (P < 0.05). This research presents the potential protective mechanisms of oridonin on BPA-induced liver injury at the metabolic level, which might be used to identify new protective agents that prevent BPA-induced liver injury.
Collapse
Affiliation(s)
- Xinying Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ming Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Zihan Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Weiqi Cui
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jingxian Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Weijie Zhang
- Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Key Laboratory of Rehabilitation Medicine, Department of Pediatrics, the Fifth Affiliated Hospital, Zhengzhou University, Kangfuqian Street, Zhengzhou, Henan 450052, PR China
| | - Yu Xia
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Youcai Tang
- Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Key Laboratory of Rehabilitation Medicine, Department of Pediatrics, the Fifth Affiliated Hospital, Zhengzhou University, Kangfuqian Street, Zhengzhou, Henan 450052, PR China.
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
6
|
Khan NG, Correia J, Adiga D, Rai PS, Dsouza HS, Chakrabarty S, Kabekkodu SP. A comprehensive review on the carcinogenic potential of bisphenol A: clues and evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19643-19663. [PMID: 33666848 PMCID: PMC8099816 DOI: 10.1007/s11356-021-13071-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 04/12/2023]
Abstract
Bisphenol A [BPA; (CH3)2C(C6H4OH)2] is a synthetic chemical used as a precursor material for the manufacturing of plastics and resins. It gained attention due to its high chances of human exposure and predisposing individuals at extremely low doses to diseases, including cancer. It enters the human body via oral, inhaled, and dermal routes as leach-out products. BPA may be anticipated as a probable human carcinogen. Studies using in vitro cell lines, rodent models, and epidemiological analysis have convincingly shown the increasing susceptibility to cancer at doses below the oral reference dose set by the Environmental Protection Agency for BPA. Furthermore, BPA exerts its toxicological effects at the genetic and epigenetic levels, influencing various cell signaling pathways. The present review summarizes the available data on BPA and its potential impact on cancer and its clinical outcome.
Collapse
Affiliation(s)
- Nadeem Ghani Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jacinta Correia
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmalatha Satwadi Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Singha SP, Memon S, Kazi SAF, Nizamani GS. Gamma aminobutyric acid signaling disturbances and altered astrocytic morphology associated with Bisphenol A induced cognitive impairments in rat offspring. Birth Defects Res 2021; 113:911-924. [PMID: 33655713 DOI: 10.1002/bdr2.1886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Bisphenol A (BPA) is a well-recognized endocrine disruptor and is globally used in the manufacture of many plastic items. Multiple studies suggest links between prenatal BPA exposure and alterations in neurodevelopment and behaviors in children, even at lower levels. This study was conducted to reveal the role of astrocyte morphology and Gamma aminobutyric acid (GABA) signaling in BPA induced cognitive defects in the offspring of Wistar albino rats when exposed during the prenatal and postnatal periods. METHODS Dams of Wistar albino rats were exposed to a dose of 5 mg/kg body weight of BPA throughout the pregnancy and lactation period until the third postnatal day (PND). After delivery of pups, cognitive tests were carried out on the 21st, 24th, and 28th PNDs. Blood samples were collected for measurement of serum GABA levels. On the same day as the blood collections, pups were sacrificed and their right frontal cortices were dissected out. Immunohistochemical analysis for glial fibrillar acidic protein + astrocytes was conducted. RESULTS Pre and postnatal BPA exposure led to anxiety like behavior in pups. This exposure also resulted in reduced serum GABA concentrations. Immunohistochemical analysis revealed reduced astrocyte numbers as well as decreased numbers of dendritic spines in the BPA exposed pups. CONCLUSION BPA exposure during critical periods of development leads to cognitive impairments that correlate with the defects in the GABA signaling pathways and deteriorated morphology of the astrocytes in the offspring of the Wistar rats.
Collapse
Affiliation(s)
| | - Samreen Memon
- Department of Anatomy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | | | - Ghulam Shah Nizamani
- Department of Basic Medical Sciences, In Charge, Clinical Laboratory and Blood Bank, Isra University Hyderabad, Sindh, Pakistan
| |
Collapse
|
8
|
Tassinari R, Narciso L, Tait S, Busani L, Martinelli A, Di Virgilio A, Carli F, Deodati A, La Rocca C, Maranghi F. Juvenile Toxicity Rodent Model to Study Toxicological Effects of Bisphenol A (BPA) at Dose Levels Derived From Italian Children Biomonitoring Study. Toxicol Sci 2020; 173:387-401. [PMID: 31697385 DOI: 10.1093/toxsci/kfz226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bisphenol A (BPA) is a plasticizer with endocrine disrupting properties particularly relevant for children health. Recently BPA has been associated with metabolic dysfunctions but no data are yet available in specific, long-term studies. This study aimed to evaluate BPA modes of action and hazards during animal juvenile life-stage, corresponding to childhood. Immature Sprague-Dawley rats of both sexes were orally treated with 0 (vehicle only-olive oil), 2, 6, and 18 mg/kg bw per day of BPA for 28 days, from weaning to sexual maturity. Dose levels were obtained from the PERSUADED biomonitoring study in Italian children. Both no-observed-adverse-effect-level (NOAEL)/low-observed-adverse-effect-level (LOAEL) and estimated benchmark dose (BMD) approaches were applied. General toxicity, parameters of sexual development, endocrine/reproductive/functional liver and kidney biomarkers, histopathology of target tissues, and gene expression in hypothalamic-pituitary area and liver were studied. No mortality or general toxicity occurred. Sex-specific alterations were observed in liver, thyroid, spleen, leptin/adiponectin serum levels, and hypothalamic-pituitary gene expression. Thyroid homeostasis and liver were the most sensitive targets of BPA exposure in the peripubertal phase. The proposed LOAEL was 2 mg/kg bw, considering as critical effect the liver endpoints, kidney weight in male and adrenal histomorphometrical alterations and osteopontin upregulation in female rats. The BMD lower bounds were 0.05 and 1.33 mg/kg bw in males and females, considering liver and thyroid biomarkers, respectively. Overall, BPA evaluation at dose levels derived from children biomonitoring study allowed to identify sex-specific, targeted toxicological effects that may have significant impact on risk assessment for children.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Martinelli
- Experimental Animal Welfare Sector, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Di Virgilio
- Experimental Animal Welfare Sector, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Annalisa Deodati
- Dipartimento Pediatrico Universitario Ospedaliero "Bambino Gesù".,Children's Hospital-Tor Vergata University, Rome, Italy
| | | | | | | |
Collapse
|
9
|
Basit F, Akhtar T, Hameed N, Abbasi MH, Sheikh N. Subchronic toxicity of bisphenol A on the architecture of spleen and hepatic trace metals and protein profile of adult male Wistar rats. Hum Exp Toxicol 2020; 39:1355-1363. [PMID: 32394729 DOI: 10.1177/0960327120921440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bisphenol A (BPA) is one of the widely used chemical as a plasticizer and regarded as endocrine disruptor because of its ability to derail body metabolic functions and adverse effect on the vital organs. The present work outlined the subchronic effect of low-dose BPA (10 mg/kg) on histology of spleen, level of hepatic trace metals, and hepatic protein profile of Wistar rats. To conduct the research work, animals were grouped into two categories (n = 5). Group 1 was labelled as the control group and group 2 was taken as an experimental group. Experimental group was exposed to low-dose BPA for 12 weeks. Histopathology of spleen highlighted dilation in splenic sinuses, follicle activation, followed by depopulation in the area of white pulp and red pulp in the experimental group. Iron staining revealed significant hemosiderosis in the experimental group when compared with the control group. Statistically significant decrease was noted in zinc and copper concentrations, while nonsignificant change was observed for magnesium concentration through atomic absorption spectroscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was run for hepatic protein profiling, and as compared to control, elevated levels of different proteins were observed in the experimental group. It can be concluded from the above results that even low dose of BPA causes changes in the major organs of the body. Hence, it is suggested that BPA alternative should be used, so that public health status can be secured.
Collapse
Affiliation(s)
- F Basit
- Department of Zoology, University of the Punjab, Lahore, Punjab, Pakistan
| | - T Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore, Punjab, Pakistan
| | - N Hameed
- Department of Zoology, University of the Punjab, Lahore, Punjab, Pakistan
| | - M H Abbasi
- Department of Zoology, University of Okara, Okara, Punjab, Pakistan
| | - N Sheikh
- Department of Zoology, University of the Punjab, Lahore, Punjab, Pakistan
| |
Collapse
|
10
|
Jiménez-Torres C, Hernández-Kelly LC, Najimi M, Ortega A. Bisphenol A exposure disrupts aspartate transport in HepG2 cells. J Biochem Mol Toxicol 2020; 34:e22516. [PMID: 32363662 DOI: 10.1002/jbt.22516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/17/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023]
Abstract
The liver is the organ responsible for bisphenol A (BPA) metabolism, an environmental chemical agent. Exposure to this toxin is associated with liver abnormalities and dysfunction. An important role played by excitatory amino acid transporters (EAATs) of the slc1 gene family has been reported in liver injuries. To gain insight into a plausible effect of BPA exposure in the liver glutamate/aspartate transport, using the human hepatoblastoma cell line HepG2, we report a BPA-dependent dynamic regulation of SLC1A3 and SLC1A2. Through the use of radioactive [3 H]- d-aspartate uptake experiments and immunochemical approaches, we characterized time and dose-dependent regulation of the protein levels and function of these transporters after acute exposure to BPA. An increase in nuclear Yin Yang 1 was found. These results suggest an important involvement of the EAATs in liver physiology and its disruption after acute BPA exposure.
Collapse
Affiliation(s)
- Catya Jiménez-Torres
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Mustapha Najimi
- Hepato-Gastroenterolgy Research Pole, Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université́ Catholique de Louvain, Brussels, Belgium
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| |
Collapse
|
11
|
de Aguiar Greca SC, Kyrou I, Pink R, Randeva H, Grammatopoulos D, Silva E, Karteris E. Involvement of the Endocrine-Disrupting Chemical Bisphenol A (BPA) in Human Placentation. J Clin Med 2020; 9:jcm9020405. [PMID: 32028606 PMCID: PMC7074564 DOI: 10.3390/jcm9020405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Endocrine-disrupting chemicals (EDCs) are environmental chemicals/toxicants that humans are exposed to, interfering with the action of multiple hormones. Bisphenol A (BPA) is classified as an EDC with xenoestrogenic activity with potentially adverse effects in reproduction. Currently, a significant knowledge gap remains regarding the complete spectrum of BPA-induced effects on the human placenta. As such, the present study examined the effects of physiologically relevant doses of BPA in vitro. Methods: qRT-PCR, Western blotting, immunofluorescence, ELISA, microarray analyses, and bioinformatics have been employed to study the effects of BPA using nonsyncytialised (non-ST) and syncytialised (ST) BeWo cells. Results: Treatment with 3 nM BPA led to an increase in cell number and altered the phosphorylation status of p38, an effect mediated primarily via the membrane-bound estrogen receptor (GPR30). Nonbiased microarray analysis identified 1195 and 477 genes that were differentially regulated in non-ST BeWo cells, whereas in ST BeWo cells, 309 and 158 genes had altered expression when treated with 3 and 10 nM, respectively. Enriched pathway analyses in non-ST BeWo identified a leptin and insulin overlap (3 nM), methylation pathways (10 nM), and differentiation of white and brown adipocytes (common). In the ST model, most significantly enriched were the nuclear factor erythroid 2-related factor 2 (NRF2) pathway (3 nM) and mir-124 predicted interactions with cell cycle and differentiation (10 nM). Conclusion: Collectively, our data offer a new insight regarding BPA effects at the placental level, and provide a potential link with metabolic changes that can have an impact on the developing fetus.
Collapse
Affiliation(s)
| | - Ioannis Kyrou
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK;
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ryan Pink
- Dept of Bio. & Med. Sci., Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Harpal Randeva
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Dimitris Grammatopoulos
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Elisabete Silva
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
- Correspondence: (E.S.); (E.K.)
| | - Emmanouil Karteris
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
- Correspondence: (E.S.); (E.K.)
| |
Collapse
|
12
|
Kim BY, Kim M, Jeong JS, Jee SH, Park IH, Lee BC, Chung SK, Lim KM, Lee YS. Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. ENVIRONMENTAL RESEARCH 2019; 173:124-134. [PMID: 30903817 DOI: 10.1016/j.envres.2019.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/14/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA), a synthetic monomer commonly included in the daily products, has a structure similar to the estrogen receptor agonist. Therefore BPA has been anticipated to interfere with the hormone metabolisms and cause diverse pathological conditions. But the effects of BPA on the genetic landscapes of liver or hepatic cells have not been fully established. Gene expressional changes induced by low- or high-dose of BPA were evaluated in 3D cultured human hepatoma cells (HepG2 spheroids) in vitro at 0, 0.5, 5 and 200 μM and liver of rats exposed to BPA at 0, 0.5 and 250 mg/kg for 90 days in vivo. Functional enrichment analysis, pathway activity measurement and network analysis were performed using BPA-responsive genes. Treatment with BPA changed a lot of gene expressions in both HepG2 spheroids and rat livers depending on doses of BPA. Functional enrichment and pathway analysis show that lipid or steroid metabolism-related functions were altered by BPA in both HepG2 spheroids and livers of rats. Lipid metabolism-related functions altered by BPA formed a large cluster encompassing lipid biosynthesis, steroid metabolic process and cholesterol regulation process. It was also observed that distribution of pathway activities was correlated between HepG2 spheroids and rat livers at low-dose of BPA. Distance distribution in protein-protein interaction network also evidenced the closeness of BPA-responsive genes to metabolism pathways which include lipid metabolism. Collectively, we demonstrated that BPA greatly influenced overall gene expression and biological functions in both human hepatoma spheroids and rat liver, in which lipid- or steroid metabolism-associated genes were significantly altered by the exposure to BPA.
Collapse
Affiliation(s)
- Bu-Yeo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Minjeong Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji Seong Jeong
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Sun-Ha Jee
- Department of Epidemiology and Health Promotion, and Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, 03722, Republic of Korea
| | | | | | - Sun-Ku Chung
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Kyung-Min Lim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Yun-Sil Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
13
|
Kim M, Gu GJ, Koh YS, Lee SH, Na YR, Seok SH, Lim KM. Fasiglifam (TAK-875), a G Protein-Coupled Receptor 40 (GPR40) Agonist, May Induce Hepatotoxicity through Reactive Oxygen Species Generation in a GPR40-Dependent Manner. Biomol Ther (Seoul) 2018; 26:599-607. [PMID: 29429148 PMCID: PMC6254646 DOI: 10.4062/biomolther.2017.225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/08/2023] Open
Abstract
Fasiglifam (TAK-875) a G-protein coupled receptor 40 (GPR40) agonist, significantly improves hyperglycemia without hypoglycemia and weight gain, the major side effects of conventional anti-diabetics. Unfortunately, during multi-center Phase 3 clinical trials, unexpected liver toxicity resulted in premature termination of its development. Here, we investigated whether TAK-875 directly inflicts toxicity on hepatocytes and explored its underlying mechanism of toxicity. TAK-875 decreased viability of 2D and 3D cultures of HepG2, a human hepatocarcinoma cell line, in concentration- (>50 μM) and time-dependent manners, both of which corresponded with ROS generation. An antioxidant, N-acetylcysteine, attenuated TAK-875-mediated hepatotoxicity, which confirmed the role of ROS generation. Of note, knockdown of GPR40 using siRNA abolished the hepatotoxicity of TAK-875 and attenuated ROS generation. In contrast, TAK-875 induced no cytotoxicity in fibroblasts up to 500 μM. Supporting the hepatotoxic potential of TAK-875, exposure to TAK-875 resulted in increased mortality of zebrafish larvae at 25 μM. Histopathological examination of zebrafish exposed to TAK-875 revealed severe hepatotoxicity as manifested by degenerated hypertrophic hepatocytes with cytoplasmic vacuolation and acentric nuclei, confirming that TAK-875 may induce direct hepatotoxicity and that ROS generation may be involved in a GPR40-dependent manner.
Collapse
Affiliation(s)
- MinJeong Kim
- College of Pharmacology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gyo Jeong Gu
- Department of Microbiology and Immunology and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yun-Sook Koh
- College of Pharmacology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Su-Hyun Lee
- Biosolutions Co., Seoul 01811, Republic of Korea
| | - Yi Rang Na
- Department of Microbiology and Immunology and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacology, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
14
|
Kim M, Jeong JS, Kim H, Hwang S, Park IH, Lee BC, Yoon SI, Jee SH, Nam KT, Lim KM. Low Dose Exposure to Di-2-Ethylhexylphthalate in Juvenile Rats Alters the Expression of Genes Related with Thyroid Hormone Regulation. Biomol Ther (Seoul) 2018; 26:512-519. [PMID: 30078309 PMCID: PMC6131019 DOI: 10.4062/biomolther.2018.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
Phthalates widely used in the manufacture of plastics have deeply penetrated into our everyday lives. Recently, a concern over the toxicity of phthalates on thyroid, has been raised but in most of cases, the doses employed were unrealistically high. To investigate the effects of phthalates on thyroid, we investigated the effects of the repeated oral exposure to low to high doses (0.3, 3, 30 and 150 mg/kg) di-2-ethylhexylphthalate (DEHP) from weaning to maturity for 90 days in juvenile rats on the thyroid. The histological examination revealed that DEHP significantly induced hyperplasia in the thyroid from the doses of 30 mg/kg, which was confirmed with Ki67 staining. In line with this finding, increased mRNA expression of thyrotropin releasing hormone (Trh) was observed in the thyroid of female at 0.3 mg/kg and 150 mg/kg as determined by RNAseq analysis. Moreover, significantly increased expression of parathyroid hormone (Pth) in the female at 0.3 mg/kg, and thyroglobulin (Tg) and thyroid hormone responsive (Thrsp) in the male at 0.3 mg/kg were noted in the blood, of which changes were substantially attenuated at 150 m/kg, alluding the meaningful effects of low dose DEHP on the thyroid hormone regulation. Urinary excretion of mono-2-ethylhexyl-phthalate (MEHP), a major metabolite of DEHP was determined to be 4.10 and 12.26 ppb in male, 6.65 and 324 ppb in female at 0.3 and 30 mg/kg DEHP, respectively, which fell within reported human urine levels. Collectively, these results suggest a potential adverse effects of low dose phthalates on the thyroid.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Seong Jeong
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Hyunji Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seungwoo Hwang
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | | | | | - Sung Il Yoon
- Department of Epidemiology and Health Promotion, and Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul 03722, Republic of Korea
| | - Sun Ha Jee
- Lab frontier Co., Anyang 14042, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
15
|
Lee GA, Choi KC, Hwang KA. Treatment with Phytoestrogens Reversed Triclosan and Bisphenol A-Induced Anti-Apoptosis in Breast Cancer Cells. Biomol Ther (Seoul) 2018; 26:503-511. [PMID: 29310425 PMCID: PMC6131008 DOI: 10.4062/biomolther.2017.160] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/22/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
Triclosan (TCS) and bisphenol A (BPA) are endocrine-disrupting chemicals that interfere with the hormone or endocrine system and may cause cancer. Kaempferol (Kaem) and 3,3'-diindolylmethane (DIM) are phytoestrogens that play chemopreventive roles in the inhibition of carcinogenesis and cancer progression. In this study, the influence of TCS, BPA, Kaem, and DIM on proliferation and apoptotic abilities of VM7Luc4E2 breast cancer cells were examined. MTT assay revealed that TCS (0.1-10 µM), BPA (0.1-10 µM) and E2 (0.01-0.0001 µM) induced significant cell proliferation of VM7Luc4E2 cells, which was restored to the control (0.1% DMSO) by co-treatment with Kaem (30 µM) or DIM (15 µM). Reactive oxygen species (ROS) production assays showed that TCS and BPA inhibited ROS production of VM7Luc4E2 cells similar to E2, but that co-treatment with Kaem or DIM on VM7Luc4E2 cells induced increased ROS production. Based on these results, the effects of TCS, BPA, Kaem, and DIM on protein expression of apoptosis and ROS production-related markers such as Bax and Bcl-xl, as well as endoplasmic reticulum (ER) stress-related markers such as eIF2α and CHOP were investigated by Western blot assay. The results revealed that TCS, and BPA induced anti-apoptosis by reducing ROS production and ER stress. However, Kaem and DIM effectively inhibited TCS and BPA-induced anti-apoptotic processes in VM7Luc4E2 cells. Overall, TCS and BPA were revealed to be distinct xenoestrogens that enhanced proliferation and anti-apoptosis, while Kaem and DIM were identified as natural chemopreventive compounds that effectively inhibited breast cancer cell proliferation and increased anti-apoptosis induced by TCS and BPA.
Collapse
Affiliation(s)
- Geum-A Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
16
|
Kim S, Mun GI, Choi E, Kim M, Jeong JS, Kang KW, Jee S, Lim KM, Lee YS. Submicromolar bisphenol A induces proliferation and DNA damage in human hepatocyte cell lines in vitro and in juvenile rats in vivo. Food Chem Toxicol 2017; 111:125-132. [PMID: 29128613 DOI: 10.1016/j.fct.2017.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/07/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022]
Abstract
An association between bisphenol A (BPA) exposure and hepatic tumors was suggested, but the employment of high-dose levels raises questions about its relevance to human health. Here, we demonstrate that submicromolar concentrations of BPA induce the proliferation and DNA damage in human hepatocyte cell lines. In HepG2 and NKNT-3, undifferentiated and differentiated hepatocyte cell lines, respectively, submicromolar BPA concentrations promoted the cell proliferation, as indicated by enhanced DNA synthesis and elevated expression of cell-cycle proteins. At concentrations higher than 10 μM, these effects disappeared, reflecting a non-monotonic dose-response relationship. Notably, histone H2AX was activated following exposure to BPA, which is a sensitive marker of DNA damage. Importantly, proliferative foci and DNA damage were also observed in liver tissue of rats orally exposed to BPA at 0.5 mg/kg for 90 days, from juvenile age (postnatal day 9) through adulthood. Reactive oxygen species appeared to play a role in the BPA-induced proliferation and DNA damage, as evidenced by a partial reversal of both processes upon pretreatment with an antioxidant, N-acetylcysteine. Collectively, these results demonstrate that submicromolar BPA concentrations induce the DNA damage and promote the cell proliferation in the liver, which may support its role as a risk factor for hepatocarcinogenicity.
Collapse
Affiliation(s)
- Seoyoung Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gil-Im Mun
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eun Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjeong Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Seong Jeong
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Keon Wook Kang
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunha Jee
- Department of Epidemiology and Health Promotion and Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyung-Min Lim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|