1
|
Rho SB, Byun HJ, Kim BR, Lee CH. Liver Kinase B1 Mediates Its Anti-Tumor Function by Binding to the N-Terminus of Malic Enzyme 3. Biomol Ther (Seoul) 2023; 31:330-339. [PMID: 37095735 PMCID: PMC10129855 DOI: 10.4062/biomolther.2023.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/26/2023] Open
Abstract
Liver kinase B1 (LKB1) is a crucial tumor suppressor involved in various cellular processes, including embryonic development, tumor initiation and progression, cell adhesion, apoptosis, and metabolism. However, the precise mechanisms underlying its functions remain elusive. In this study, we demonstrate that LKB1 interacts directly with malic enzyme 3 (ME3) through the N-terminus of the enzyme and identified the binding regions necessary for this interaction. The binding activity was confirmed to promote the expression of ME3 in an LKB1-dependent manner and was also shown to induce apoptosis activity. Furthermore, LKB1 and ME3 overexpression upregulated the expression of tumour suppressor proteins (p53 and p21) and downregulated the expression of antiapoptotic proteins (nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and B-cell lymphoma 2 (Bcl-2)). Additionally, LKB1 and ME3 enhanced the transcription of p21 and p53 and inhibited the transcription of NF-κB. Moreover, LKB1 and ME3 suppressed the phosphorylation of various components of the phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B signaling pathway. Overall, these results suggest that LKB1 promotes pro-apoptotic activities by inducing ME3 expression.
Collapse
Affiliation(s)
- Seung Bae Rho
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408
| | - Hyun Jung Byun
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Boh-Ram Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
2
|
Kang GJ, Park JH, Kim HJ, Kim EJ, Kim B, Byun HJ, Yu L, Nguyen TM, Nguyen TH, Kim KS, Huy HP, Rahman M, Kim YH, Jang JY, Park MK, Lee H, Choi CI, Lee K, Han HK, Cho J, Rho SB, Lee CH. PRR16/Largen Induces Epithelial-Mesenchymal Transition through the Interaction with ABI2 Leading to the Activation of ABL1 Kinase. Biomol Ther (Seoul) 2022; 30:340-347. [PMID: 35719027 PMCID: PMC9252882 DOI: 10.4062/biomolther.2022.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Advanced or metastatic breast cancer affects multiple organs and is a leading cause of cancer-related death. Cancer metastasis is associated with epithelial-mesenchymal metastasis (EMT). However, the specific signals that induce and regulate EMT in carcinoma cells remain unclear. PRR16/Largen is a cell size regulator that is independent of mTOR and Hippo signalling pathways. However, little is known about the role PRR16 plays in the EMT process. We found that the expression of PRR16 was increased in mesenchymal breast cancer cell lines. PRR16 overexpression induced EMT in MCF7 breast cancer cells and enhances migration and invasion. To determine how PRR16 induces EMT, the binding proteins for PRR16 were screened, revealing that PRR16 binds to Abl interactor 2 (ABI2). We then investigated whether ABI2 is involved in EMT. Gene silencing of ABI2 induces EMT, leading to enhanced migration and invasion. ABI2 is a gene that codes for a protein that interacts with ABL proto-oncogene 1 (ABL1) kinase. Therefore, we investigated whether the change in ABI2 expression affected the activation of ABL1 kinase. The knockdown of ABI2 and PRR16 overexpression increased the phosphorylation of Y412 in ABL1 kinase. Our results suggest that PRR16 may be involved in EMT by binding to ABI2 and interfering with its inhibition of ABL1 kinase. This indicates that ABL1 kinase inhibitors may be potential therapeutic agents for the treatment of PRR16-related breast cancer.
Collapse
Affiliation(s)
- Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jung Ho Park
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyun Ji Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Boram Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyun Jung Byun
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Lu Yu
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Thi Ha Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Kyung Sung Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Hiệu Phùng Huy
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Mostafizur Rahman
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Ye Hyeon Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Ji Yun Jang
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea.,National Cancer Center, Goyang 10408, Republic of Korea
| | - Mi Kyung Park
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Chang Ick Choi
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyo Kyung Han
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Rho SB, Byun HJ, Kim BR, Lee CH. Snail Promotes Cancer Cell Proliferation via Its Interaction with the BIRC3. Biomol Ther (Seoul) 2022; 30:380-388. [PMID: 35711139 PMCID: PMC9252879 DOI: 10.4062/biomolther.2022.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022] Open
Abstract
Snail is implicated in tumour growth and metastasis and is up-regulated in various human tumours. Although the role of Snails in epithelial-mesenchymal transition, which is particularly important in cancer metastasis, is well known, how they regulate tumour growth is poorly described. In this study, the possible molecular mechanisms of Snail in tumour growth were explored. Baculoviral inhibitor of apoptosis protein (IAP) repeat-containing protein 3 (BIRC3), a co-activator of cell proliferation during tumourigenesis, was identified as a Snail-binding protein via a yeast two-hybrid system. Since BIRC3 is important for cell survival, the effect of BIRC3 binding partner Snail on cell survival was investigated in ovarian cancer cell lines. Results revealed that Bax expression was activated, while the expression levels of anti-apoptotic proteins were markedly decreased by small interfering RNA (siRNA) specific for Snail (siSnail). siSnail, the binding partner of siBIRC3, activated the tumour suppressor function of p53 by promoting p53 protein stability. Conversely, BIRC3 could interact with Snail, for this reason, the possibility of BIRC3 involvement in EMT was investigated. BIRC3 overexpression resulted in a decreased expression of the epithelial marker and an increased expression of the mesenchymal markers. siSnail or siBIRC3 reduced the mRNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. These results provide evidence that Snail promotes cell proliferation by interacting with BIRC3 and that BIRC3 might be involved in EMT via binding to Snail in ovarian cancer cells. Therefore, our results suggested the novel relevance of BIRC3, the binding partner of Snail, in ovarian cancer development.
Collapse
Affiliation(s)
- Seung Bae Rho
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Hyun-Jung Byun
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul/Goyang 04620, Republic of Korea
| | - Boh-Ram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul/Goyang 04620, Republic of Korea
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul/Goyang 04620, Republic of Korea
| |
Collapse
|
4
|
Kim HJ, Kim B, Byun HJ, Yu L, Nguyen TM, Nguyen TH, Do PA, Kim EJ, Cheong KA, Kim KS, Huy Phùng H, Rahman M, Jang JY, Rho SB, Kang GJ, Park MK, Lee H, Lee K, Cho J, Han HK, Kim SG, Lee AY, Lee CH. Resolvin D1 Suppresses H 2O 2-Induced Senescence in Fibroblasts by Inducing Autophagy through the miR-1299/ARG2/ARL1 Axis. Antioxidants (Basel) 2021; 10:1924. [PMID: 34943028 PMCID: PMC8750589 DOI: 10.3390/antiox10121924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/15/2022] Open
Abstract
ARG2 has been reported to inhibit autophagy in vascular endothelial cells and keratinocytes. However, studies of its mechanism of action, its role in skin fibroblasts, and the possibility of promoting autophagy and inhibiting cellular senescence through ARG2 inhibition are lacking. We induced cellular senescence in dermal fibroblasts by using H2O2. H2O2-induced fibroblast senescence was inhibited upon ARG2 knockdown and promoted upon ARG2 overexpression. The microRNA miR-1299 suppressed ARG2 expression, thereby inhibiting fibroblast senescence, and miR-1299 inhibitors promoted dermal fibroblast senescence by upregulating ARG2. Using yeast two-hybrid assay, we found that ARG2 binds to ARL1. ARL1 knockdown inhibited autophagy and ARL1 overexpression promoted it. Resolvin D1 (RvD1) suppressed ARG2 expression and cellular senescence. These data indicate that ARG2 stimulates dermal fibroblast cell senescence by inhibiting autophagy after interacting with ARL1. In addition, RvD1 appears to promote autophagy and inhibit dermal fibroblast senescence by inhibiting ARG2 expression. Taken together, the miR-1299/ARG2/ARL1 axis emerges as a novel mechanism of the ARG2-induced inhibition of autophagy. Furthermore, these results indicate that miR-1299 and pro-resolving lipids, including RvD1, are likely involved in inhibiting cellular senescence by inducing autophagy.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Hyung Jung Byun
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Lu Yu
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Tuan Minh Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Thi Ha Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Phuong Anh Do
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kyung Ah Cheong
- Department of Dermatology, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (K.A.C.); (G.J.K.); (A.Y.L.)
| | - Kyung Sung Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Hiệu Huy Phùng
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Mostafizur Rahman
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Ji Yun Jang
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Mi Kyung Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Ho Lee
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Jungsook Cho
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Hyo Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Sang Geon Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Ai Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (K.A.C.); (G.J.K.); (A.Y.L.)
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| |
Collapse
|