1
|
Zhu L, Liu YP, Huang YT, Zhou ZJ, Liu JF, Yu LM, Wang HS. Cellular and molecular biology of posttranslational modifications in cardiovascular disease. Biomed Pharmacother 2024; 179:117374. [PMID: 39217836 DOI: 10.1016/j.biopha.2024.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) has now become the leading cause of death worldwide, and its high morbidity and mortality rates pose a great threat to society. Although numerous studies have reported the pathophysiology of CVD, the exact pathogenesis of all types of CVD is not fully understood. Therefore, much more research is still needed to explore the pathogenesis of CVD. With the development of proteomics, many studies have successfully identified the role of posttranslational modifications in the pathogenesis of CVD, including key processes such as apoptosis, cell metabolism, and oxidative stress. In this review, we summarize the progress in the understanding of posttranslational modifications in cardiovascular diseases, including novel protein posttranslational modifications such as succinylation and nitrosylation. Furthermore, we summarize the currently identified histone deacetylase (HDAC) inhibitors used to treat CVD, providing new perspectives on CVD treatment modalities. We critically analyze the roles of posttranslational modifications in the pathogenesis of CVD-related diseases and explore future research directions related to posttranslational modifications in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Zhu
- Graduate School of Dalian Medical University, Dalian 116000, Liaoning, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yong-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yu-Ting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Zi-Jun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Jian-Feng Liu
- First School of Clinical Medicine, Shenyang Medical College, Shenyang 110034, Liaoning, China
| | - Li-Ming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China.
| | - Hui-Shan Wang
- Graduate School of Dalian Medical University, Dalian 116000, Liaoning, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China.
| |
Collapse
|
2
|
Mondal NK, Li S, Elsenousi AE, Mattar A, Nordick KV, Lamba HK, Hochman-Mendez C, Rosengart TK, Liao KK. NADPH oxidase overexpression and mitochondrial OxPhos impairment are more profound in human hearts donated after circulatory death than brain death. Am J Physiol Heart Circ Physiol 2024; 326:H548-H562. [PMID: 38180451 DOI: 10.1152/ajpheart.00616.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
This study investigated cardiac stress and mitochondrial oxidative phosphorylation (OxPhos) in human donation after circulatory death (DCD) hearts regarding warm ischemic time (WIT) and subsequent cold storage and compared them with that of human brain death donor (DBD) hearts. A total of 24 human hearts were procured for the research study-6 in the DBD group and 18 in the DCD group. DCD group was divided into three groups (n = 6) based on different WITs (20, 40, and 60 min). All hearts received del Nido cardioplegia before being placed in normal saline cold storage for 6 h. Left ventricular biopsies were performed at hours 0, 2, 4, and 6. Cardiac stress [nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits: 47-kDa protein of phagocyte oxidase (p47phox), 91-kDa glycoprotein of phagocyte oxidase (gp91phox)] and mitochondrial oxidative phosphorylation [OxPhos, complex I (NADH dehydrogenase) subunit of ETC (CI)-complex V (ATP synthase) subunit of ETC (CV)] proteins were measured in cardiac tissue and mitochondria respectively. Modulation of cardiac stress and mitochondrial dysfunction were observed in both DCD and DBD hearts. However, DCD hearts suffered more cardiac stress (overexpressed NADPH oxidase subunits) and diminished mitochondrial OxPhos than DBD hearts. The severity of cardiac stress and impaired oxidative phosphorylation in DCD hearts correlated with the longer WIT and subsequent cold storage time. More drastic changes were evident in DCD hearts with a WIT of 60 min or more. Activation of NADPH oxidase via overproduction of p47phox and gp91phox proteins in cardiac tissue may be responsible for cardiac stress leading to diminished mitochondrial oxidative phosphorylation. These protein changes can be used as biomarkers for myocardium damage and might help assess DCD and DBD heart transplant suitability.NEW & NOTEWORTHY First human DCD heart research studied cardiac stress and mitochondrial dysfunction concerning WIT and the efficacy of del Nido cardioplegia as an organ procurement solution and subsequent cold storage. Mild to moderate cardiac stress and mitochondrial dysfunction were noticed in DCD hearts with WIT 20 and 40 min and cold storage for 4 and 2 h, respectively. These changes can serve as biomarkers, allowing interventions to preserve mitochondria and extend WIT in DCD hearts.
Collapse
Affiliation(s)
- Nandan K Mondal
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, Texas, United States
| | - Shiyi Li
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Abdussalam E Elsenousi
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Aladdein Mattar
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Katherine V Nordick
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Harveen K Lamba
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, Texas, United States
| | - Todd K Rosengart
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Kenneth K Liao
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
3
|
Zhu H, Yan C, Yao P, Li P, Li Y, Yang H. Ginsenoside Rg1 protects cardiac mitochondrial function via targeting GSTP1 to block S-glutathionylation of optic atrophy 1. Free Radic Biol Med 2023; 204:54-67. [PMID: 37105420 DOI: 10.1016/j.freeradbiomed.2023.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Mitochondrial dysfunction is a fundamental challenge in myocardial injury. Ginsenoside Rg1 (Rg1) is a bioactive compound with pharmacological potential for cardiac protection. Optic atrophy 1 (OPA1) acts as a mitochondrial inner membrane protein that contributes to the structural integrity and function of mitochondria. This study investigated the protective role of Rg1 in septic cardiac injury from the perspective of OPA1 stability. Rg1 protected cardiac contractive function against endotoxin injury in mice by maintaining mitochondrial cristae structure. In cardiomyocytes, lipopolysaccharide (LPS) evoked mitochondrial fragmentation and destruction of mitochondrial biogenesis, which were prevented by Rg1, possibly due to the preservation of the integrity of cristae structure. In support, the beneficial effects of Rg1 on cardioprotection and mitochondrial biogenesis were diminished by OPA1 deficiency subjected to the LPS challenge. Mechanistically, LPS stimulation triggered intracellular glutathione destabilization that promoted S-glutathionylation of OPA1 at Cys551, leading to the dissociation of OPA1-Mitofilin. Rg1 interacted with GSTP1 to inhibit its S-glutathionylation of OPA1, thereby promoting OPA1-Mitofilin interaction and protecting mitochondrial cristae structure. These findings suggest that GSTP1/OPA1 axis may be a beneficial strategy for the treatment of myocardial injury, and expand the clinical application of Rg1.
Collapse
Affiliation(s)
- Huimin Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China
| | - Changyang Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China
| | - Peng Yao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China.
| |
Collapse
|
4
|
Genetic Biodiversity and Posttranslational Modifications of Protease Serine Endopeptidase in Different Strains of Sordaria fimicola. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2088988. [PMID: 36814796 PMCID: PMC9940969 DOI: 10.1155/2023/2088988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Genetic variations (mutation, crossing over, and recombination) act as a source for the gradual alternation in phenotype along a geographic transect where the environment changes. Posttranslational modifications (PTMs) predicted modifications successfully in different and the same species of living organisms. Protein diversity of living organisms is predicted by PTMs. Environmental stresses change nucleotides to produce alternations in protein structures, and these alternations have been examined through bioinformatics tools. The goal of the current study is to search the diversity of genes and posttranslational modifications of protease serine endopeptidase in various strains of Sordaria fimicola. The S. fimicola's genomic DNA was utilized to magnify the protease serine endopeptidase (SP2) gene; the size of the product was 700 and 1400 base pairs. Neurospora crassa was taken as the reference strain for studying the multiple sequence alignment of the nucleotide sequence. Six polymorphic sites of six strains of S. fimicola with respect to N. crassa were under observation. Different bioinformatics tools, i.e., NetPhos 3.1, NetNES 1.1 Server, YinOYang1.2, and Mod Pred, to search phosphorylation sites, acetylation, nuclear export signals, O-glycosylation, and methylation, respectively, were used to predict PTMs. The findings of the current study were 35 phosphorylation sites on the residues of serine for protease SP2 in SFS and NFS strains of S. fimicola and N. crassa. The current study supported us to get the reality of genes involved in protease production in experimental fungi. Our study examined the genetic biodiversity in six strains of S. fimicola which were caused by stressful environments, and these variations are a strong reason for evolution. In this manuscript, we predicted posttranslational modifications of protease serine endopeptidase in S. fimicola obtained from different sites, for the first time, to see the effect of environmental stress on nucleotides, amino acids, and proteases and to study PTMs by using various bioinformatics tools. This research confirmed the genetic biodiversity and PTMs in six strains of S. fimicola, and the designed primers also provided strong evidence for the presence of protease serine endopeptidase in each strain of S. fimicola.
Collapse
|
5
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
6
|
Park N, Marquez J, Garcia MVF, Shimizu I, Lee SR, Kim HK, Han J. Phosphorylation in Novel Mitochondrial Creatine Kinase Tyrosine Residues Render Cardioprotection against Hypoxia/Reoxygenation Injury. J Lipid Atheroscler 2021; 10:223-239. [PMID: 34095014 PMCID: PMC8159762 DOI: 10.12997/jla.2021.10.2.223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 11/09/2022] Open
Abstract
Objective Ischemic cardiomyopathy (ICM) is the leading cause of heart failure. Proteomic and genomic studies have demonstrated ischemic preconditioning (IPC) can assert cardioprotection against ICM through mitochondrial function regulation. Considering IPC is conducted in a relatively brief period, regulation of protein expression also occurs very rapidly, highlighting the importance of protein function modulation by post-translational modifications. This study aimed to identify and analyze novel phosphorylated mitochondrial proteins that can be harnessed for therapeutic strategies for preventing ischemia/reperfusion (I/R) injury. Methods Sprague-Dawley rat hearts were used in an ex vivo Langendorff system to simulate normal perfusion, I/R, and IPC condition, after which the samples were prepared for phosphoproteomic analysis. Employing human cardiomyocyte AC16 cells, we investigated the cardioprotective role of CKMT2 through overexpression and how site-directed mutagenesis of putative CKMT2 phosphorylation sites (Y159A, Y255A, and Y368A) can affect cardioprotection by measuring CKMT2 protein activity, mitochondrial function and protein expression changes. Results The phosphoproteomic analysis revealed dephosphorylation of mitochondrial creatine kinase (CKMT2) during ischemia and I/R, while preserving its phosphorylated state during IPC. CKMT2 overexpression conferred cardioprotection against hypoxia/reoxygenation (H/R) by increasing cell viability and mitochondrial adenosine triphosphate level, preserving mitochondrial membrane potential, and reduced reactive oxygen species (ROS) generation, while phosphomutations, especially in Y368, nullified cardioprotection by significantly reducing cell viability and increasing ROS production during H/R. CKMT2 overexpression increased mitochondrial function by mediating the proliferator-activated receptor γ coactivator-1α/estrogen-related receptor-α pathway, and these effects were mostly inhibited by Y368A mutation. Conclusion These results suggest that regulation of quantitative expression and phosphorylation site Y368 of CKMT2 offers a unique mechanism in future ICM therapeutics.
Collapse
Affiliation(s)
- Nammi Park
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea
| | - Jubert Marquez
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea.,Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea
| | - Maria Victoria Faith Garcia
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea.,Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sung Ryul Lee
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea.,Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea.,Department of Physiology, College of Medicine, Inje University, Busan, Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea.,Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea.,Department of Physiology, College of Medicine, Inje University, Busan, Korea
| |
Collapse
|
7
|
A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165992. [PMID: 33091565 DOI: 10.1016/j.bbadis.2020.165992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) opening is involved in the pathophysiology of multiple cardiac diseases, such as ischemia/reperfusion injury and heart failure. A growing number of evidence provided by proteomic screening techniques has demonstrated the role of post-translational modifications (PTMs) in several key components of the pore in response to changes in the extra/intracellular environment and bioenergetic demand. This could lead to a fine, complex regulatory mechanism that, under pathological conditions, can shift the state of mitochondrial functions and, thus, the cell's fate. Understanding the complex relationship between these PTMs is still under investigation and can provide new, promising therapeutic targets and treatment approaches. This review, using a systematic review of the literature, presents the current knowledge on PTMs of the mPTP and their role in health and cardiac disease.
Collapse
|
8
|
Li N, Zhan X. MASS SPECTROMETRY-BASED MITOCHONDRIAL PROTEOMICS IN HUMAN OVARIAN CANCERS. MASS SPECTROMETRY REVIEWS 2020; 39:471-498. [PMID: 32020673 DOI: 10.1002/mas.21618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The prominent characteristics of mitochondria are highly dynamic and regulatory, which have crucial roles in cell metabolism, biosynthetic, senescence, apoptosis, and signaling pathways. Mitochondrial dysfunction might lead to multiple serious diseases, including cancer. Therefore, identification of mitochondrial proteins in cancer could provide a global view of tumorigenesis and progression. Mass spectrometry-based quantitative mitochondrial proteomics fulfils this task by enabling systems-wide, accurate, and quantitative analysis of mitochondrial protein abundance, and mitochondrial protein posttranslational modifications (PTMs). Multiple quantitative proteomics techniques, including isotope-coded affinity tag, stable isotope labeling with amino acids in cell culture, isobaric tags for relative and absolute quantification, tandem mass tags, and label-free quantification, in combination with different PTM-peptide enrichment methods such as TiO2 enrichment of tryptic phosphopeptides and antibody enrichment of other PTM-peptides, increase flexibility for researchers to study mitochondrial proteomes. This article reviews isolation and purification of mitochondria, quantitative mitochondrial proteomics, quantitative mitochondrial phosphoproteomics, mitochondrial protein-involved signaling pathway networks, mitochondrial phosphoprotein-involved signaling pathway networks, integration of mitochondrial proteomic and phosphoproteomic data with whole tissue proteomic and transcriptomic data and clinical information in ovarian cancers (OC) to in-depth understand its molecular mechanisms, and discover effective mitochondrial biomarkers and therapeutic targets for predictive, preventive, and personalized treatment of OC. This proof-of-principle model about OC mitochondrial proteomics is easily implementable to other cancer types. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Na Li
- University Creative Research Initiatives Center, Shandong First Medical University, Shandong, 250062, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| | - Xianquan Zhan
- University Creative Research Initiatives Center, Shandong First Medical University, Shandong, 250062, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Department of Oncology, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| |
Collapse
|
9
|
Kao HJ, Nguyen VN, Huang KY, Chang WC, Lee TY. SuccSite: Incorporating Amino Acid Composition and Informative k-spaced Amino Acid Pairs to Identify Protein Succinylation Sites. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:208-219. [PMID: 32592791 PMCID: PMC7647693 DOI: 10.1016/j.gpb.2018.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/01/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022]
Abstract
Protein succinylation is a biochemical reaction in which a succinyl group (-CO-CH2-CH2-CO-) is attached to the lysine residue of a protein molecule. Lysine succinylation plays important regulatory roles in living cells. However, studies in this field are limited by the difficulty in experimentally identifying the substrate site specificity of lysine succinylation. To facilitate this process, several tools have been proposed for the computational identification of succinylated lysine sites. In this study, we developed an approach to investigate the substrate specificity of lysine succinylated sites based on amino acid composition. Using experimentally verified lysine succinylated sites collected from public resources, the significant differences in position-specific amino acid composition between succinylated and non-succinylated sites were represented using the Two Sample Logo program. These findings enabled the adoption of an effective machine learning method, support vector machine, to train a predictive model with not only the amino acid composition, but also the composition of k-spaced amino acid pairs. After the selection of the best model using a ten-fold cross-validation approach, the selected model significantly outperformed existing tools based on an independent dataset manually extracted from published research articles. Finally, the selected model was used to develop a web-based tool, SuccSite, to aid the study of protein succinylation. Two proteins were used as case studies on the website to demonstrate the effective prediction of succinylation sites. We will regularly update SuccSite by integrating more experimental datasets. SuccSite is freely accessible at http://csb.cse.yzu.edu.tw/SuccSite/.
Collapse
Affiliation(s)
- Hui-Ju Kao
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 32003, Taiwan, China
| | - Van-Nui Nguyen
- Department of Information Technology, University of Information and Communication Technology, Thai Nguyen 1000, Vietnam
| | - Kai-Yao Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Wen-Chi Chang
- Institute of Tropical Plant Sciences, Cheng Kung University, Tainan 701, Taiwan, China
| | - Tzong-Yi Lee
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.
| |
Collapse
|
10
|
Albert M, Bécares M, Falqui M, Fernández-Lozano C, Guerra S. ISG15, a Small Molecule with Huge Implications: Regulation of Mitochondrial Homeostasis. Viruses 2018; 10:v10110629. [PMID: 30428561 PMCID: PMC6265978 DOI: 10.3390/v10110629] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Viruses are responsible for the majority of infectious diseases, from the common cold to HIV/AIDS or hemorrhagic fevers, the latter with devastating effects on the human population. Accordingly, the development of efficient antiviral therapies is a major goal and a challenge for the scientific community, as we are still far from understanding the molecular mechanisms that operate after virus infection. Interferon-stimulated gene 15 (ISG15) plays an important antiviral role during viral infection. ISG15 catalyzes a ubiquitin-like post-translational modification termed ISGylation, involving the conjugation of ISG15 molecules to de novo synthesized viral or cellular proteins, which regulates their stability and function. Numerous biomedically relevant viruses are targets of ISG15, as well as proteins involved in antiviral immunity. Beyond their role as cellular powerhouses, mitochondria are multifunctional organelles that act as signaling hubs in antiviral responses. In this review, we give an overview of the biological consequences of ISGylation for virus infection and host defense. We also compare several published proteomic studies to identify and classify potential mitochondrial ISGylation targets. Finally, based on our recent observations, we discuss the essential functions of mitochondria in the antiviral response and examine the role of ISG15 in the regulation of mitochondrial processes, specifically OXPHOS and mitophagy.
Collapse
Affiliation(s)
- Manuel Albert
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Martina Bécares
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Michela Falqui
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Carlos Fernández-Lozano
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| |
Collapse
|
11
|
Rocha AG, Knight SAB, Pandey A, Yoon H, Pain J, Pain D, Dancis A. Cysteine desulfurase is regulated by phosphorylation of Nfs1 in yeast mitochondria. Mitochondrion 2018; 40:29-41. [PMID: 28941588 PMCID: PMC5858965 DOI: 10.1016/j.mito.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/30/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
Abstract
The cysteine desulfurase Nfs1/Isd11 uses the amino acid cysteine as the substrate and its activity is absolutely required for contributing persulfide sulfur to the essential process of iron-sulfur (Fe-S) cluster assembly in mitochondria. Here we describe a novel regulatory process involving phosphorylation of Nfs1 in mitochondria. Phosphorylation enhanced cysteine desulfurase activity, while dephosphorylation decreased its activity. Nfs1 phosphopeptides were identified, and the corresponding phosphosite mutants showed impaired persulfide formation. Nfs1 pull down from mitochondria recovered an associated kinase activity, and Yck2, a kinase present in the pull down, was able to phosphorylate Nfs1 in vitro and stimulate cysteine desulfurase activity. Yck2 exhibited an eclipsed distribution in the mitochondrial matrix, although other cellular localizations have been previously described. Mitochondria lacking the Yck2 protein kinase (∆yck2) showed less phosphorylating activity for Nfs1. Compared with wild-type mitochondria, ∆yck2 mitochondria revealed slower persulfide formation on Nfs1 consistent with a role of Yck2 in regulating mitochondrial cysteine desulfurase activity. We propose that Nfs1 phosphorylation may provide a means of rapid adaptation to increased metabolic demand for sulfur and Fe-S clusters within mitochondria.
Collapse
Affiliation(s)
- Agostinho G Rocha
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Simon A B Knight
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alok Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Heeyong Yoon
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jayashree Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Anderson G. Linking the biological underpinnings of depression: Role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:255-266. [PMID: 28433458 DOI: 10.1016/j.pnpbp.2017.04.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/01/2017] [Indexed: 01/08/2023]
Abstract
The pathophysiological underpinnings of neuroprogressive processes in recurrent major depressive disorder (rMDD) are reviewed. A wide array of biochemical processes underlie MDD presentations and their shift to a recurrent, neuroprogressive course, including: increased immune-inflammation, tryptophan catabolites (TRYCATs), mitochondrial dysfunction, aryl hydrocarbonn receptor activation, and oxidative and nitrosative stress (O&NS), as well as decreased sirtuins and melatonergic pathway activity. These biochemical changes may have their roots in central, systemic and/or peripheral sites, including in the gut, as well as in developmental processes, such as prenatal stressors and breastfeeding consequences. Consequently, conceptualizations of MDD have dramatically moved from simple psychological and central biochemical models, such as lowered brain serotonin, to a conceptualization that incorporates whole body processes over a lifespan developmental timescale. However, important hubs are proposed, including the gut-brain axis, and mitochondrial functioning, which may provide achievable common treatment targets despite considerable inter-individual variability in biochemical changes. This provides a more realistic model of the complexity of MDD and the pathophysiological processes that underpin the shift to rMDD and consequent cognitive deficits. Such accumulating data on the pathophysiological processes underpinning MDD highlights the need in psychiatry to shift to a classification system that is based on biochemical processes, rather than subjective phenomenology.
Collapse
|
13
|
Thu VT, Kim HK, Long LT, Thuy TT, Huy NQ, Kim SH, Kim N, Ko KS, Rhee BD, Han J. NecroX-5 exerts anti-inflammatory and anti-fibrotic effects via modulation of the TNFα/Dcn/TGFβ1/Smad2 pathway in hypoxia/reoxygenation-treated rat hearts. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:305-14. [PMID: 27162485 PMCID: PMC4860373 DOI: 10.4196/kjpp.2016.20.3.305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022]
Abstract
Inflammatory and fibrotic responses are accelerated during the reperfusion period, and excessive fibrosis and inflammation contribute to cardiac malfunction. NecroX compounds have been shown to protect the liver and heart from ischemia-reperfusion injury. The aim of this study was to further define the role and mechanism of action of NecroX-5 in regulating infl ammation and fi brosis responses in a model of hypoxia/reoxygenation (HR). We utilized HR-treated rat hearts and lipopolysaccharide (LPS)-treated H9C2 culture cells in the presence or absence of NecroX-5 (10 µmol/L) treatment as experimental models. Addition of NecroX-5 signifi cantly increased decorin (Dcn) expression levels in HR-treated hearts. In contrast, expression of transforming growth factor beta 1 (TGFβ1) and Smad2 phosphorylation (pSmad2) was strongly attenuated in NecroX-5-treated hearts. In addition, signifi cantly increased production of tumor necrosis factor alpha (TNFα), TGFβ1, and pSmad2, and markedly decreased Dcn expression levels, were observed in LPS-stimulated H9C2 cells. Interestingly, NecroX-5 supplementation effectively attenuated the increased expression levels of TNFα, TGFβ1, and pSmad2, as well as the decreased expression of Dcn. Thus, our data demonstrate potential antiinflammatory and anti-fibrotic effects of NecroX-5 against cardiac HR injuries via modulation of the TNFα/Dcn/TGFβ1/Smad2 pathway.
Collapse
Affiliation(s)
- Vu Thi Thu
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.; VNU University of Science, Hanoi 120036, Vietnam
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.; Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan 47392, Korea
| | - Le Thanh Long
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | | | | | - Soon Ha Kim
- Product Strategy and Development, LG Life Sciences Ltd., Seoul 03184, Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| |
Collapse
|
14
|
Abstract
Heart failure (HF) is a multifactorial disease brought about by numerous, and oftentimes complex, etiological mechanisms. Although well studied, HF continues to affect millions of people worldwide and current treatments can only prevent further progression of HF. Mitochondria undoubtedly play an important role in the progression of HF, and numerous studies have highlighted mitochondrial components that contribute to HF. This review presents an overview of the role of mitochondrial biogenesis, mitochondrial oxidative stress, and mitochondrial permeability transition pore in HF, discusses ongoing studies that attempt to address the disease through mitochondrial targeting, and provides an insight on how these studies can affect future research on HF treatment.
Collapse
|