1
|
Zhang HZ, Han S, Kim SW. SDF-1-edited human amniotic mesenchymal stem cells stimulate angiogenesis in treating hindlimb ischaemia. J Cell Mol Med 2022; 26:3726-3735. [PMID: 35615995 PMCID: PMC9258703 DOI: 10.1111/jcmm.17401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/15/2022] [Accepted: 05/08/2022] [Indexed: 11/29/2022] Open
Abstract
Although stem cells have extensively been studied as a novel vehicle for tissue repair, their sustained efficacy remains controversial. In this study, we aimed to investigate the angiogenic potency over time of stromal cell‐derived factor‐1 (SDF‐1) gene‐edited amniotic mesenchymal stem cells (AMM/S) in a hindlimb ischaemia model. An SDF‐1 transgene was inserted into the AMM cell genome via transcription activator‐like effector nuclease (TALEN) mediated knock‐in, and cell migration, Matrigel tube formation, and in vivo Matrigel plug assays were performed. AMM/S were also transplanted into hindlimb ischaemia model mice. Blood perfusion, therapeutic potential, histology, capillary density and in vivo angiogenic assays were performed. AMM/S exhibited high expression of the SDF‐1 gene, and robustly promoted migration, proliferation and microvascular formation. AMM/S transplantation significantly increased blood perfusion and limb loss prevention compared with AMM. AMM/S also significantly inhibited increased capillary density and expression of angiogenic factors in the ischaemic hindlimb. Our study demonstrated that AMM/S provides a significant therapeutic effect in ischaemic hindlimbs by enhancing angiogenesis.
Collapse
Affiliation(s)
- Hong Zhe Zhang
- Department of Cardiology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China
| | - Seongho Han
- Department of Family Medicine, College of Medicine, Dong-A University, Busan, Korea
| | - Sung-Whan Kim
- Institute for Bio-Medical Convergence, Department Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Korea
| |
Collapse
|
2
|
Li XQ, Peng WT, Shan S, Wu JJ, Li N, Du JJ, Sun JC, Chen TT, Wei W, Sun WY. β-arrestin2 regulating β2-adrenergic receptor signaling in hepatic stellate cells contributes to hepatocellular carcinoma progression. J Cancer 2022; 12:7287-7299. [PMID: 35003349 PMCID: PMC8734423 DOI: 10.7150/jca.59291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background: β-arrestin2 and β2-adrenergic receptor (β2-AR) have important roles in malignant tumors, the present study aims to investigate the role of activated β2-AR in hepatic stellate cells (HSCs) during hepatocellular carcinoma (HCC) progression and the regulatory effect of β-arrestin2. Methods: Immunofluorescence and Western blot were used to detect the expression of β-arrestin2 and β2-AR in HSCs of liver tissues from human HCC samples and diethylnitrosamine (DEN)-induced HCC model mice. We next used β-arrestin2-/- mice to demonstrate the regulatory role of β-arrestin2 in DEN mice. The subsets of T cells were quantified by flow cytometry. MTT and wound healing assay were applied to detect the proliferation and migration of cells. Co-immunoprecipitation assay was used to detect the link of β-arrestin2 and β2-AR in HSCs. Effect of β-arrestin2 overexpression on β2-AR downstream signaling pathway was verified by Western blot. The secretion of CCL2 was detected by ELISA. Results: The expression of β2-AR was significantly increased, while β-arrestin2 was decreased in HSCs of HCC tissues. And β-arrestin2 deficiency exacerbates DEN-induced HCC accompanied with increased β2-AR expression. The results of flow cytometry showed that the percentage of activated T cells decreased gradually after DEN injection. β-arrestin2 knockout down-regulated the ratio of activated T cells. In vitro, selective activation of β2-AR in HSCs promoted the proliferation and migration of HCC cells. β-arrestin2 overexpression enhanced co-immunoprecipitation of β-arrestin2 and β2-AR in activated HSCs, and decreased its downstream Akt phosphorylation. Akt inhibitor decreased secretion of CCL2 in activated HSCs. Conclusion: Our study demonstrated that β2-AR activation in HSCs induces the proliferation and migration of HCC cells may be through Akt signaling, and this effect appears to be regulated by β-arrestin2.
Collapse
Affiliation(s)
- Xiu-Qin Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Wen-Ting Peng
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Shan Shan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Jing-Jing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Jia-Jia Du
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Jia-Chang Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| |
Collapse
|
3
|
Du JJ, Sun JC, Li N, Li XQ, Sun WY, Wei W. β-Arrestin2 deficiency attenuates oxidative stress in mouse hepatic fibrosis through modulation of NOX4. Acta Pharmacol Sin 2021; 42:1090-1100. [PMID: 33116250 PMCID: PMC8209231 DOI: 10.1038/s41401-020-00545-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is a disease characterized by excessive deposition of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is responsible for most of ECM production. Oxidative stress and reactive oxygen species (ROS) may be important factors leading to liver fibrosis. NADPH oxidase 4 (NOX4) is the main source of ROS in hepatic fibrosis, but the mechanism by which NOX4 regulates oxidative stress is not fully understood. β-Arrestin2 is a multifunctional scaffold protein that regulates receptor endocytosis, signaling and trafficking. In this study, we investigated whether β-arrestin2 regulated oxidative stress in hepatic fibrosis. Both β-arrestin2 knockout (Arrb2 KO) mice and wild-type mice were intraperitoneally injected with carbon tetrachloride (CCl4) to induce hepatic fibrosis. Arrb2 KO mice showed significantly attenuated liver fibrosis, decreased ROS levels and NOX4 expression, and reduced collagen levels in their livers. In vitro, NOX4 knockdown significantly inhibited ROS production, and decreased expression of alpha-smooth muscle actin in angiotensin II-stimulated human HSC cell line LX-2. Through overexpression or depletion of β-arrestin2 in LX-2 cells, we revealed that decreased β-arrestin2 inhibited ROS levels and NOX4 expression, and reduced collagen production; it also inhibited activation of ERK and JNK signaling pathways. These results demonstrate that β-arrestin2 deficiency protects against liver fibrosis by downregulating ROS production through NOX4. This effect appears to be mediated by ERK and JNK signaling pathways. Thus, targeted inhibition of β-arrestin2 might reduce oxidative stress and inhibit the progression of liver fibrosis.
Collapse
Affiliation(s)
- Jia-Jia Du
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Jia-Chang Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Xiu-Qin Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
4
|
Kallifatidis G, Mamouni K, Lokeshwar BL. The Role of β-Arrestins in Regulating Stem Cell Phenotypes in Normal and Tumorigenic Cells. Int J Mol Sci 2020; 21:ijms21239310. [PMID: 33297302 PMCID: PMC7729818 DOI: 10.3390/ijms21239310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
β-Arrestins (ARRBs) are ubiquitously expressed scaffold proteins that mediate inactivation of G-protein-coupled receptor signaling, and in certain circumstances, G-protein independent pathways. Intriguingly, the two known ARRBs, β-arrestin1 (ARRB1) and β-Arrestin2 (ARRB2), seem to have opposing functions in regulating signaling cascades in several models in health and disease. Recent evidence suggests that ARRBs are implicated in regulating stem cell maintenance; however, their role, although crucial, is complex, and there is no universal model for ARRB-mediated regulation of stem cell characteristics. For the first time, this review compiles information on the function of ARRBs in stem cell biology and will discuss the role of ARRBs in regulating cell signaling pathways implicated in stem cell maintenance in normal and malignant stem cell populations. Although promising targets for cancer therapy, the ubiquitous nature of ARRBs and the plethora of functions in normal cell biology brings challenges for treatment selectivity. However, recent studies show promising evidence for specifically targeting ARRBs in myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Georgios Kallifatidis
- Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: (G.K.); (B.L.L.); Tel.: +1-706-446-4976 (G.K.); +1-706-723-0033 (B.L.L.); Fax: +1-305-721-0101 (B.L.L.)
| | - Kenza Mamouni
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Bal L. Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: (G.K.); (B.L.L.); Tel.: +1-706-446-4976 (G.K.); +1-706-723-0033 (B.L.L.); Fax: +1-305-721-0101 (B.L.L.)
| |
Collapse
|
5
|
McQuaig R, Dixit P, Yamauchi A, Van Hout I, Papannarao JB, Bunton R, Parry D, Davis P, Katare R. Combination of Cardiac Progenitor Cells From the Right Atrium and Left Ventricle Exhibits Synergistic Paracrine Effects In Vitro. Cell Transplant 2020; 29:963689720972328. [PMID: 33153286 PMCID: PMC7784587 DOI: 10.1177/0963689720972328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular diseases, such as ischemic heart disease, remain the most common cause of death worldwide. Regenerative medicine with stem cell therapy is a promising tool for cardiac repair. Combination of different cell types has been shown to improve the therapeutic potential, which is thought to be due to synergistic or complimentary reparative effects. We investigated if the combination of cardiac progenitor cells (CPCs) of right atrial appendage (RAA) and left ventricle (LV) that are isolated from the same patient exert synergistic or complimentary paracrine effects for apoptotic cell death and angiogenesis in an in vitro model. Flow cytometry analysis showed that both RAA and LV CPCs expressed the mesenchymal cell markers CD90 and CD105, and were predominantly negative for the hematopoietic cell marker, CD34. Analysis of conditioned media (CM) collected from the CPCs cultured either alone or in combination in serum-deprived hypoxic conditions to simulate ischemia showed marked increase in the level of pro-survival hepatocyte growth factor and pro-angiogenic vascular endothelial growth factor-A in the combined RAA and LV CPC group. Next, to determine the therapeutic potential of CM, AC16 human ventricular cardiomyocytes and human umbilical vein endothelial cells (HUVECs) were treated with CM. Results showed a significant reduction in hypoxia-induced apoptosis of human cardiomyocytes treated with CM collected from combined RAA and LV CPC group. Similarly, matrigel assay showed a significantly increased tube length formed by HUVECs when treated with CM from combined RAA and LV CPC group. Our study provided evidence that the combination of RAA CPCs and LV CPCs may have superior therapeutic effects due to synergistic paracrine effects for cardiac repair. Therefore, in vivo studies are warranted to determine if a combination of different stem cell types have greater therapeutic potential than single-cell therapies.
Collapse
Affiliation(s)
- Ryan McQuaig
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Parul Dixit
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Atsushi Yamauchi
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle Van Hout
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jayanthi Bellae Papannarao
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Richard Bunton
- Department of Cardiothoracic Surgery and Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Dominic Parry
- Department of Cardiothoracic Surgery and Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Philip Davis
- Department of Cardiothoracic Surgery and Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Rajesh Katare
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Kim SW, Ryu HA, Lee YS, Jeong IS, Kim S. Generation of directly reprogrammed human endothelial cells derived from fibroblast using ultrasound. J Mol Cell Cardiol 2018; 126:118-128. [PMID: 30500375 DOI: 10.1016/j.yjmcc.2018.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/12/2018] [Accepted: 11/22/2018] [Indexed: 11/24/2022]
Abstract
Physical microenvironment plays an important role in determining cellular reprogramming. In this study, we first generated directly reprogrammed human dermal fibroblasts (HDFs) into endothelial cells (ECs) mediated by environmental transition-guided cellular reprogramming (e/Entr) using ultrasound and characterized e/Entr. Ultrasound stimulus was introduced to ECs culture media and HDFs and induced into ECs-like cells. We performed microarray, RT-PCR, protein analysis, matrigel plug assay and e/Entr were transplanted into ischemic hindlimb mice model. Here we show that the activation of MAPK signaling pathways and the modulation of histone proteins such as Hp1-α, H3K27me3 and H3K4me3 in e/Entr contribute to the changes in chromatin configuration and reprogramming. Microarray data demonstrated that e/Entr highly expressed genes associated with ECs transcription factors and angiogenesis. In addition, the transplantation of e/Entr into hindlimb ischemia showed a high recovery of blood perfusion, limb salvage and e/Entr contributed to the formation of new vessels. In conclusion, the present study provided the first evidence that ultrasound reprogramming can induce postnatal cells to functional ECs. Therefore, our data suggest that physical stimulus-mediated reprogramming is a highly effective and safe strategy for the novel therapeutic alternatives.
Collapse
Affiliation(s)
- Sung-Whan Kim
- Institute for Bio-Medical Convergence, Department Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Metropolitan City, Incheon 404-834, Republic of Korea.
| | - Hyun Aae Ryu
- Institute for Bio-Medical Convergence, Department Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Metropolitan City, Incheon 404-834, Republic of Korea
| | - Yong Seung Lee
- Institute for Bio-Medical Convergence, Department Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Metropolitan City, Incheon 404-834, Republic of Korea
| | - In Sil Jeong
- Institute for Bio-Medical Convergence, Department Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Metropolitan City, Incheon 404-834, Republic of Korea
| | - Soonhag Kim
- Institute for Bio-Medical Convergence, Department Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Metropolitan City, Incheon 404-834, Republic of Korea.
| |
Collapse
|
7
|
Marquez J, Han J. You're Not under Arrest: Worry-free with β-arrestin. Korean Circ J 2018; 48:325-328. [PMID: 29625515 PMCID: PMC5889982 DOI: 10.4070/kcj.2018.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/05/2018] [Indexed: 12/02/2022] Open
Affiliation(s)
- Jubert Marquez
- Department of Health Sciences and Technology, BK21 Plus Project Team, Graduate School of Inje University, Busan, Korea
| | - Jin Han
- Department of Health Sciences and Technology, BK21 Plus Project Team, Graduate School of Inje University, Busan, Korea.,Cardiovascular and Metabolic Disease Center, BK21 Plus Project Team, National Research Laboratory for Mitochondrial Signaling, Inje University, Busan, Korea.
| |
Collapse
|