1
|
Hao M, Zhong K, Bai X, Wu S, Li L, He Y, Wang Z, Sun X, Wang Q, Guo Y, Sun Y, Wu L. Upregulated Tβ4 expression in inflammatory bowel disease impairs the intestinal mucus barrier by inhibiting autophagy in mice. Exp Cell Res 2024; 434:113871. [PMID: 38049080 DOI: 10.1016/j.yexcr.2023.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Disrupted intestinal barrier homeostasis is fundamental to inflammatory bowel disease. Thymosin β4 (Tβ4) improves inflammation and has beneficial effects in dry-eye diseases, but its effects on the intestinal mucus barrier remain unknown. Therefore, this study evaluated the underlying regulatory mechanisms and effects of Tβ4 by examining Tβ4 expression in a mouse model with dextran sodium sulfate (DSS)-induced colitis and colonic barrier damage. Additionally, we intraperitoneally injected C57BL/6 mice with Tβ4 to assess barrier function, microtubule-associated protein 1 light chain 3 (LC3II) protein expression, and autophagy. Finally, normal human colon tissue and colon carcinoma cells (Caco2) were cultured to verify Tβ4-induced barrier function and autophagy changes. Mucin2 levels decreased, microbial infiltration increased, and Tβ4 expression increased in the colitis mouse model versus the control mice, indicating mucus barrier damage. Moreover, Tβ4-treated C57BL/6 mice had damaged intestinal mucus barriers and decreased LC3II levels. Tβ4 also inhibited colonic mucin2 production, disrupted tight junctions, and downregulated autophagy; these results were confirmed in Caco2 cells and normal human colon tissue. In summary, Tβ4 may be implicated in colitis by compromising the integrity of the intestinal mucus barrier and inhibiting autophagy. Thus, Tβ4 could be a new diagnostic marker for intestinal barrier defects.
Collapse
Affiliation(s)
- Menghao Hao
- School of Medicine, Southwest Jiaotong University, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China; Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Ke Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Xiaoqin Bai
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Shiyan Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Lu Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yumei He
- North Sichuan Medical College, Nanchong, 637000, China
| | - Zhiming Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Xiaobin Sun
- Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Qiong Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Yueshan Sun
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China.
| | - Liping Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China.
| |
Collapse
|
2
|
Abstract
Liver fibrosis, a major characteristic of chronic liver disease, is inappropriate tissue remodeling caused by prolonged parenchymal cell injury and inflammation. During liver injury, hepatic stellate cells (HSCs) undergo transdifferentiation from quiescent HSCs into activated HSCs, which promote the deposition of extracellular matrix proteins, leading to liver fibrosis. Thymosin beta 4 (Tβ4), a major actin-sequestering protein, is the most abundant member of the highly conserved β-thymosin family and controls cell morphogenesis and motility by regulating the dynamics of the actin cytoskeleton. Tβ4 is known to be involved in various cellular responses, including antiinflammation, wound healing, angiogenesis, and cancer progression. Emerging evidence suggests that Tβ4 is expressed in the liver; however, its biological roles are poorly understood. Herein, we introduce liver fibrogenesis and recent findings regarding the function of Tβ4 in various tissues and discuss the potential role of Tβ4 in liver fibrosis with a special focus on the effects of exogenous and endogenous Tβ4. Recent studies have revealed that activated HSCs express Tβ4 in vivo and in vitro. Treatment with the exogenous Tβ4 peptide inhibits the proliferation and migration of activated HSCs and reduces liver fibrosis, indicating it has an antifibrotic action. Meanwhile, the endogenously expressed Tβ4 in activated HSCs is shown to promote HSCs activation. Although the role of Tβ4 has not been elucidated, it is apparent that Tβ4 is associated with HSC activation. Therefore, understanding the potential roles and regulatory mechanisms of Tβ4 in liver fibrosis may provide a novel treatment for patients.
Collapse
|
3
|
Pellicciari C. Histochemistry in biology and medicine: a message from the citing journals. Eur J Histochem 2015; 59:2610. [PMID: 26708189 PMCID: PMC4698620 DOI: 10.4081/ejh.2015.2610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Especially in recent years, biomedical research has taken advantage of the progress in several disciplines, among which microscopy and histochemistry. To assess the influence of histochemistry in the biomedical field, the articles published during the period 2011-2015 have been selected from different databases and grouped by subject categories: as expected, biological and biomedical studies where histochemistry has been used as a major experimental approach include a wide of basic and applied researches on both humans and other animal or plant organisms. To better understand the impact of histochemical publications onto the different biological and medical disciplines, it was useful to look at the journals where the articles published in a multidisciplinary journal of histochemistry have been cited: it was observed that, in the five-years period considered, 20% only of the citations were in histochemical periodicals, the remaining ones being in journals of Cell & Tissue biology, general and experimental Medicine, Oncology, Biochemistry & Molecular biology, Neurobiology, Anatomy & Morphology, Pharmacology & Toxicology, Reproductive biology, Veterinary sciences, Physiology, Endocrinology, Tissue engineering & Biomaterials, as well as in multidisciplinary journals.It is easy to foresee that also in the future the histochemical journals will be an attended forum for basic and applied scientists in the biomedical field. It will be crucial that these journals be open to an audience as varied as possible, publishing articles on the application of refined techniques to very different experimental models: this will stimulate non-histochemist scientists to approach histochemistry whose application horizon could expand to novel and possibly exclusive subjects.
Collapse
|
4
|
Pellicciari C. Impact of Histochemistry on biomedical research: looking through the articles published in a long-established histochemical journal. Eur J Histochem 2014; 58:2474. [PMID: 25578981 PMCID: PMC4289853 DOI: 10.4081/ejh.2014.2474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022] Open
Abstract
Histochemistry provides the unique opportunity to detect single molecules in the very place where they exert their structural roles or functional activities: this makes it possible to correlate structural organization and function, and may be fruitfully exploited in countless biomedical research topics. Aiming to estimate the impact of histochemical articles in the biomedical field, the last few years citations of articles published in a long-established histochemical journal have been considered. This brief survey suggests that histochemical journals, especially the ones open to a large spectrum of research subjects, do represent an irreplaceable source of information not only for cell biologists, microscopists or anatomists, but also for biochemists, molecular biologists and biotechnologists.
Collapse
|
5
|
Li Z, Qu L, Zhong H, Xu K, Qiu X. [Thymosin beta 10 prompted the VEGF-C expression in lung cancer cell]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 17:378-83. [PMID: 24854554 PMCID: PMC6000446 DOI: 10.3779/j.issn.1009-3419.2014.05.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
背景与目的 我们前期的研究发现胸腺素β10(thymosin β10, Tβ10)在肺癌中过表达并与肺癌的分期、分化及淋巴结转移呈正相关。本研究旨在探讨外源人重组蛋白Tβ10在肺癌细胞系中促进血管内皮生长因子(vascular endothelial growth factor, VEGF)-C表达情况及其调控机制。 方法 采用RT-PCR法检测不同肺癌细胞系加入外源Tβ10或Tβ10加AKT特异性抑制剂LY294002后VEGF-C mRNA水平的变化;采用Western blot法检测不同肺癌细胞系加入Tβ10或Tβ10加LY294002后VEGF-C及P-AKT蛋白的变化。 结果 在肺癌细胞系SPC-A-1中加入Tβ10可以促进VEGF-C mRNA及蛋白的表达水平,同时促进AKT的磷酸化。在肺癌细胞系A549和LK2中加入Tβ10同样可以促进VEGF-C mRNA及蛋白的表达(P < 0.05),并且这种促进作用可以被LY294002所抑制(P < 0.05)。 结论 人重组蛋白Tβ10肺癌通过激活AKT的磷酸化促进VEGF-C的表达。
Collapse
Affiliation(s)
- Zixuan Li
- Department of Pathology, the First Affiliated Hospital of China Medical University and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China;Department of Radiology and Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Lianyue Qu
- Department of Pharmacy, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Hongshan Zhong
- Department of Radiology and Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ke Xu
- Department of Radiology and Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xueshan Qiu
- Department of Pathology, the First Affiliated Hospital of China Medical University and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| |
Collapse
|
6
|
Theunissen W, Fanni D, Nemolato S, Di Felice E, Cabras T, Gerosa C, Van Eyken P, Messana I, Castagnola M, Faa G. Thymosin beta 4 and thymosin beta 10 expression in hepatocellular carcinoma. Eur J Histochem 2014; 58:2242. [PMID: 24704991 PMCID: PMC3980204 DOI: 10.4081/ejh.2014.2242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/01/2014] [Accepted: 01/02/2014] [Indexed: 01/18/2023] Open
Abstract
Thymosin beta 4 (Tβ4) and thymosin beta 10 (Tβ10) are two members of the beta-thymosin family involved in many cellular processes such as cellular motility, angiogenesis, inflammation, cell survival and wound healing. Recently, a role for beta-thymosins has been proposed in the process of carcinogenesis as both peptides were detected in several types of cancer. The aim of the present study was to investigate the expression pattern of Tβ4 and Tβ10 in hepatocellular carcinoma (HCC). To this end, the expression pattern of both peptides was analyzed in liver samples obtained from 23 subjects diagnosed with HCC. Routinely formalin-fixed and paraffin-embedded liver samples were immunostained by indirect immunohistochemistry with polyclonal antibodies to Tβ4 and Tβ10. Immunoreactivity for Tβ4 and Tβ10 was detected in the liver parenchyma of the surrounding tumor area. Both peptides showed an increase in granular reactivity from the periportal to the periterminal hepatocytes. Regarding HCC, Tβ4 reactivity was detected in 7/23 cases (30%) and Tβ10 reactivity in 22/23 (96%) cases analyzed, adding HCC to human cancers that express these beta-thymosins. Intriguing finding was seen looking at the reactivity of both peptides in tumor cells infiltrating the surrounding liver. Where Tβ10 showed a strong homogeneous expression, was Tβ4 completely absent in cells undergoing stromal invasion. The current study shows expression of both beta-thymosins in HCC with marked differences in their degree of expression and frequency of immunoreactivity. The higher incidence of Tβ10 expression and its higher reactivity in tumor cells involved in stromal invasion indicate a possible major role for Tβ10 in HCC progression.
Collapse
|
7
|
Pellicciari C. Histochemistry as an irreplaceable approach for investigating functional cytology and histology. Eur J Histochem 2013; 57:e41. [PMID: 24441194 PMCID: PMC3896043 DOI: 10.4081/ejh.2013.e41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 12/19/2022] Open
Abstract
In agreement with the evolution of histochemistry over the last fifty years and thanks to the impressive advancements in microscopy sciences, the application of cytochemical techniques to light and electron microscopy is more and more addressed to elucidate the functional characteristics of cells and tissue under different physiological, pathological or experimental conditions. Simultaneously, the mere description of composition and morphological features has become increasingly sporadic in the histochemical literature. Since basic research on cell functional organization is essential for understanding the mechanisms responsible for major biological processes such as differentiation or growth control in normal and tumor tissues, histochemical Journals will continue to play a pivotal role in the field of cell and tissue biology in all its structural and functional aspects.
Collapse
|