1
|
Li Y, Ma X, Gao T, Zheng Z, Liu A, Tian S. Differential Expression and Functional Prediction of mRNA in the Ovaries of Hanper Sheep of High and Low Fecundity. Reprod Domest Anim 2022; 57:1623-1635. [PMID: 36030089 DOI: 10.1111/rda.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Hanper ewes that were either monotocous or polytocous provided ovarian follicles of diameter >3 mm in the follicular phase and, in the luteal phase, samples of corpora lutea that had developed from follicles of diameter >3 mm. Differentially expressed mRNAs (monotocous versus polytocous) were then identified and their functions were predicted. Results showed that 1508 mRNAs were differentially expressed in the follicular phase, with 885 being in the luteal tissues. Those which were differentially expressed in the follicular phase were mainly involved in the regulation of the ferroptosis and lysosome signaling pathways whereas, for the luteal tissue, the differentially expressed mRNAs were mainly involved in the regulation of steroid biosynthesis. Based on the results, it was inferred that these pathways could explain variations in the fecundity of sheep.
Collapse
Affiliation(s)
- Yuexin Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiaofei Ma
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Teng Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhong Zheng
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Aiju Liu
- Department of Agricultural and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou, China
| | - Shujun Tian
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
2
|
Dénes V, Kovacs K, Lukáts Á, Mester A, Berta G, Szabó A, Gabriel R. Secreted key regulators (Fgf1, Bmp4, Gdf3) are expressed by PAC1-immunopositive retinal ganglion cells in the postnatal rat retina. Eur J Histochem 2022; 66. [PMID: 35477223 PMCID: PMC9087371 DOI: 10.4081/ejh.2022.3373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022] Open
Abstract
Identified as a member of the secretin/glucagon/VIP superfamily, pituitary adenylate cyclase-activating polypeptide (PACAP1-38) has been recognized as a hormone, neurohormone, transmitter, trophic factor, and known to be involved in diverse and multiple developmental processes. PACAP1-38 was reported to regulate the production of important morphogens (Fgf1, Bmp4, Gdf3) through PAC1-receptor in the newborn rat retina. To follow up, we aimed to reveal the identity of retinal cells responsible for the production and secretion of Fgf1, Bmp4, and Gdf3 in response to PACAP1-38 treatment. Newborn (P1) rats were treated with 100 pmol PACAP1-38 intravitreally. After 24 h, retinas were dissected and processed for immunohistochemistry performed either on flat-mounted retinas or cryosections. Brn3a and PAC1-R double labeling revealed that 90% of retinal ganglion cells (RGCs) expressed PAC1-receptor. We showed that RGCs were Fgf1, Bmp4, and Gdf3- immunopositive and PAC1-R was co-expressed with each protein. To elucidate if RGCs release these secreted regulators, the key components for vesicle release were examined. No labeling was detected for synaptophysin, Exo70, or NESP55 in RGCs but an intense Rab3a-immunoreactivity was detected in their cell bodies. We found that the vast majority of RGCs are responsive to PACAP, which in turn could have a significant impact on their development or/and physiology. Although Fgf1, Bmp4, and Gdf3 were abundantly expressed in PAC1-positive RGCs, the cells lack synaptophysin and Exo70 in the newborn retina thus unable to release these proteins. These proteins could regulate postnatal RGC development acting through intracrine pathways.
Collapse
Affiliation(s)
- Viktória Dénes
- Department of Experimental Zoology and Neurobiology, University of Pécs.
| | - Kármen Kovacs
- Department of Experimental Zoology and Neurobiology, University of Pécs.
| | - Ákos Lukáts
- Department of Experimental Zoology and Neurobiology, University of Pécs; Department of Translational Medicine, Semmelweis University, Budapest.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs.
| | - Gergely Berta
- Institute of Medical Biology, School of Medicine, University of Pécs.
| | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs.
| |
Collapse
|
3
|
Shu DY, Lovicu FJ. Insights into Bone Morphogenetic Protein-(BMP-) Signaling in Ocular Lens Biology and Pathology. Cells 2021; 10:cells10102604. [PMID: 34685584 PMCID: PMC8533954 DOI: 10.3390/cells10102604] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of growth factors that belong to the transforming growth factor-beta (TGFβ) superfamily. Although originally discovered to possess osteogenic properties, BMPs have since been identified as critical regulators of many biological processes, including cell-fate determination, cell proliferation, differentiation and morphogenesis, throughout the body. In the ocular lens, BMPs are important in orchestrating fundamental developmental processes such as induction of lens morphogenesis, and specialized differentiation of its fiber cells. Moreover, BMPs have been reported to facilitate regeneration of the lens, as well as abrogate pathological processes such as TGFβ-induced epithelial-mesenchymal transition (EMT) and apoptosis. In this review, we summarize recent insights in this topic and discuss the complexities of BMP-signaling including the role of individual BMP ligands, receptors, extracellular antagonists and cross-talk between canonical and non-canonical BMP-signaling cascades in the lens. By understanding the molecular mechanisms underlying BMP activity, we can advance their potential therapeutic role in cataract prevention and lens regeneration.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Frank J. Lovicu
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Correspondence: ; Tel.: +61-2-9351-5170
| |
Collapse
|
4
|
Pellicciari C. Histochemistry as a versatile research toolkit in biological research, not only an applied discipline in pathology. Eur J Histochem 2018; 62. [PMID: 30572698 PMCID: PMC6317132 DOI: 10.4081/ejh.2018.3006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022] Open
Abstract
The impressive progress of histochemistry over the last 50 years has led to setting up specific and sensitive techniques to describe dynamic events, through the detection of specific molecules in the very place where they exist in live cells. The scientific field where histochemistry has most largely been applied is histopathology, with the aim to identify disease-specific molecular markers or to elucidate the etiopathological mechanisms. Numerous authors did however apply histochemistry to a variety of other research fields; their interests range from the microanatomy of animal and plant organisms to the cellular mechanisms of life. This is especially apparent browsing the contents of the histochemical journals where the articles on subjects other than pathology are the majority; these journals still keep a pivotal role in the field of cell and tissue biology, while being a forum for a diverse range of biologists whose scientific interests expand the research horizon of histochemistry to ever novel subjects. Thus, histochemistry can always receive inspiring stimuli toward a continuous methodological refinement.
Collapse
Affiliation(s)
- Carlo Pellicciari
- University of Pavia, Department of Biology and Biotechnology "Lazzaro Spallanzani".
| |
Collapse
|
5
|
Wei FF, Huang QF, Zhang ZY, Van Keer K, Thijs L, Trenson S, Yang WY, Cauwenberghs N, Mujaj B, Kuznetsova T, Allegaert K, Struijker-Boudier HAJ, Verhamme P, Vermeer C, Staessen JA. Inactive matrix Gla protein is a novel circulating biomarker predicting retinal arteriolar narrowing in humans. Sci Rep 2018; 8:15088. [PMID: 30305657 PMCID: PMC6180139 DOI: 10.1038/s41598-018-33257-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Active matrix Gla protein (MGP), a potent inhibitor of calcification in large arteries, protects against macrovascular complications. Recent studies suggested that active MGP helps maintaining the integrity of the renal and myocardial microcirculation, but its role in preserving the retinal microcirculation remains unknown. In 935 randomly recruited Flemish participants (mean age, 40.9 years; 50.3% women), we measured plasma desphospho-uncarboxylated MGP (dp-ucMGP), a marker of poor vitamin K status using an ELISA-based assay at baseline (1996-2010) and retinal microvascular diameters using IVAN software (Vasculomatic ala Nicola, version 1.1) including the central retinal arteriolar (CRAE) and venular (CRVE) equivalent and the arteriole-to-venule ratio (AVR) at follow-up (2008-2015). CRAE (P = 0.005) and AVR (P = 0.080) at follow-up decreased across tertiles of the dp-ucMGP distribution. In unadjusted models, for a doubling of dp-ucMGP at baseline, CRAE and AVR at follow-up respectively decreased by 1.40 µm (95% confidence interval [CI], 0.32 to 2.48; P = 0.011) and 0.006 (CI, 0.001 to 0.011; P = 0.016). In multivariable-adjusted models accounting for sex, baseline characteristics and follow-up duration, these estimates were -1.03 µm (CI, -1.96 to -0.11; P = 0.028) and -0.007 (CI, -0.011 to -0.002; P = 0.007). Additional adjustment for changes from baseline to follow-up in major baseline characteristics yielded as estimates -0.91 µm (CI, -1.82 to -0.01; P = 0.048) and -0.006 (95% CI, -0.011 to -0.001; P = 0.014), respectively. Circulating inactive dp-ucMGP is a long-term predictor of smaller retinal arteriolar diameter in the general population. Our observations highlight the possibility that vitamin K supplementation might promote retinal health.
Collapse
Affiliation(s)
- Fang-Fei Wei
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Qi-Fang Huang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Zhen-Yu Zhang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Karel Van Keer
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
| | - Lutgarde Thijs
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Sander Trenson
- Division of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Wen-Yi Yang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Nicholas Cauwenberghs
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Blerim Mujaj
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Tatiana Kuznetsova
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Karel Allegaert
- Research Unit Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
- Department of Pediatric Surgery and Intensive Care and Neonatology, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Peter Verhamme
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Cees Vermeer
- R&D Group VitaK, Maastricht University, Maastricht, The Netherlands
| | - Jan A Staessen
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|