1
|
Lu W, Zhou Y, Liu Y, Zhang H, Yuan Z, Han Y, Weng Q. Seasonal changes of vitamin D 3 and ovarian steroidogenesis in the wild ground squirrels (Citellus dauricus Brandt). J Steroid Biochem Mol Biol 2023; 234:106385. [PMID: 37633652 DOI: 10.1016/j.jsbmb.2023.106385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
There is mounting evidence that vitamin D3 regulates female reproductive function critically, while little is known about the function of seasonally variable vitamin D3 in regulating ovarian steroidogenesis. This study examined the seasonal expressions of vitamin D receptor (VDR), vitamin D metabolic molecules (CYP2R1, CYP27B1, and CYP24A1), and steroidogenic enzymes (P450scc, 3β-HSD, P450c17, and P450arom) in the ovaries of the wild ground squirrels (Citellus dauricus Brandt) during the different breeding seasons. VDR, CYP2R1, CYP27B1, and CYP24A1 were shown to be localized in different types of ovarian cells in the wild ground squirrels during the breeding and non-breeding seasons. Meanwhile, the mRNA levels of VDR, CYP2R1, CYP27B1, CYP11A1, HSD3B1, CYP17A1, and CYP19A1 in the ovaries were remarkably higher in the breeding season. Furthermore, RNA-seq data of ovaries revealed that 6036 genes were differentially expressed genes (DEGs); further analysis revealed that several DEGs known to be involved in ovarian steroidogenesis pathway and cellular response to vitamin D pathway were identified. In addition, during the breeding season, the concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone, and 17β-estradiol were greater in the serum of the wild female ground squirrels. This observation was positively correlated with seasonal changes in the concentration of 25(OH)D3, supporting the fact that the 25(OH)D3 content in the ovaries was significantly higher in the breeding season. These findings suggested that seasonal changes in vitamin D3 might regulate the ovarian steroidogenesis of the wild female ground squirrels.
Collapse
Affiliation(s)
- Wenjing Lu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yue Zhou
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuning Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Gao Q, Xie W, Lu W, Liu Y, Zhang H, Han Y, Weng Q. Seasonal patterns of prolactin, prolactin receptor, and STAT5 expression in the ovaries of wild ground squirrels (<em>Citellus dauricus</em> Brandt). Eur J Histochem 2023; 67:3825. [PMID: 37781865 PMCID: PMC10614723 DOI: 10.4081/ejh.2023.3825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Prolactin (PRL) is a hormone crucial for normal reproduction, functioning as an autocrine, paracrine, and endocrine factor. This study aimed to examine the immunolocalization and expression patterns of PRL, prolactin receptor (PRLR), and signal transducer and activator of transcription 5 (STAT5) in the ovaries of wild ground squirrels during both breeding and non-breeding periods. Significant seasonal variations were observed in ovarian weights, with higher values during the breeding season and relatively lower values during the nonbreeding season. PRL, PRLR, STAT5, and p-STAT5 were immunolocalized in granulosa cells and luteal cells during the breeding season, whereas they were exclusively found in granulosa cells during the non-breeding season. The mRNA expression levels of Prl, Prlr, and Stat5 were increased in ovarian tissues during the breeding season compared to the non-breeding season. Moreover, the mean mRNA levels of Prl, Prlr, and Stat5 exhibited a positive correlation with ovarian weights. Both circulating PRL and ovarian PRL concentrations were significantly elevated during the breeding season. Additionally, transcriptomic analysis of ovarian tissues revealed differentially expressed genes possibly associated with ovarian function and mammary gland development, including ovarian follicle development, steroid synthesis, and regulation of reproductive process. These findings suggest that PRL might play an essential endocrine, autocrine, or paracrine role in the regulation of seasonal changes in the ovarian functions in wild ground squirrels.
Collapse
Affiliation(s)
- Qingjing Gao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Wenjing Lu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| |
Collapse
|
3
|
Fu K, Chen X, Guo W, Zhou Z, Zhang Y, Ji T, Yang P, Tian X, Wang W, Zou Y. Effects of N Acetylcysteine on the Expression of Genes Associated with Reproductive Performance in the Goat Uterus during Early Gestation. Animals (Basel) 2022; 12:2431. [PMID: 36139290 PMCID: PMC9495183 DOI: 10.3390/ani12182431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
N acetylcysteine (NAC) affects antioxidation and reactive oxygen species scavenging in the body and thereby promotes embryonic development and implantation and inhibits inflammation. The mechanism through which NAC regulates reproductive performance in the uteri of goats during early gestation remains unclear. In this study, the treatment group was fed 0.07% NAC for the first 35 days of gestation, whereas the control group received no NAC supplementation. The regulatory genes and key pathways associated with goat reproductive performance under NAC supplementation were identified by RNA-seq. RT-qPCR was used to verify the sequencing results and subsequently construct tissue expression profiles of the relevant genes. RNA-seq identified 19,796 genes coexpressed in the control and treatment groups and 1318 differentially expressed genes (DEGs), including 787 and 531 DEGs enriched in the treatment and control groups, respectively. A GO analysis revealed that the identified genes mapped to pathways such as cell activation, cytokine production, cell mitotic processes, and angiogenesis, and a KEGG enrichment analysis showed that the DEGs were enriched in pathways associated with reproductive regulation, immune regulation, resistance to oxidative stress, and cell adhesion. The RT-qPCR analysis showed that BDNF and CSF-1 were most highly expressed in the uterus, that WIF1 and ESR2 showed low expression in the uterus, and that CTSS, PTX3, and TGFβ-3 were most highly expressed in the oviduct, which indicated that these genes may be directly or indirectly involved in the modulation of reproduction in early-gestation goats. These findings provide fundamental data for the NAC-mediated modulation of the reproductive performance of goats during early gestation.
Collapse
Affiliation(s)
- Kaibin Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhinan Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Taotao Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Peifang Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Weiwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yue Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Yang X, Liu X, Song F, Wei H, Gao F, Zhang H, Han Y, Weng Q, Yuan Z. Seasonal expressions of GPR41 and GPR43 in the colon of the wild ground squirrels ( Spermophilus dauricus). Eur J Histochem 2022; 66. [PMID: 35057584 PMCID: PMC8847768 DOI: 10.4081/ejh.2022.3351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/02/2022] [Indexed: 11/22/2022] Open
Abstract
G-protein-coupled receptor 41 (GPR41) and G-protein-coupled receptor 43 (GPR43) are important short-chain fatty acids (SCFAs) receptors. Previous studies indicated that GPR41 and GPR43 are involved in the secretion of gastrointestinal peptides, and glucose and lipid metabolism, and are closely related to obesity and type II diabetes, and other diseases. The purpose of the study was to explore the relationship between the GPR41 and GPR43 and seasonal breeding, and provide new prospects for further exploring the nutritional needs of breeding. We identified the localization and expression levels of GPR41 and GPR43 in the colon of the wild ground squirrels (Spermophilus dauricus) both in the breeding season and non-breeding season. The histological results revealed that the lumen diameter of the colon had obvious seasonal changes, and the diameter of the colonic lumen in the non-breeding season was larger than that in the breeding season. Immunohistochemical staining suggested GPR41 and GPR43 have expressed in the simple layer columnar epithelium. In addition, compared with the breeding season, the mRNA and protein expression levels of GPR41 and GPR43 in the colon were higher during the non-breeding season. In general, these results indicated GPR41 and GPR43 might play a certain role in regulating seasonal breeding.
Collapse
|
5
|
Wang Y, Su R, Liu P, Yuan Z, Han Y, Zhang H, Weng Q. Seasonal changes of mitochondrial autophagy and oxidative response in the testis of the wild ground squirrels ( Spermophilus dauricus). Am J Physiol Regul Integr Comp Physiol 2021; 321:R625-R633. [PMID: 34494473 DOI: 10.1152/ajpregu.00105.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria are the main organelles for mammalian energy metabolism and have been implicated in the regulation of germ cell maintenance and spermatogenesis. However, little is known about the changes in the mitochondria of the testis of seasonal breeders. Here, we characterized the seasonal changes in the mitochondria in the testis of the wild ground squirrels. Increased testicle weight, seminiferous tubule diameter, and sperm count were observed in the wild ground squirrels at the breeding season. RNA-seq analysis of the wild ground squirrel testes revealed that mitochondrial-related genes were expressed differentially between the breeding and nonbreeding seasons. Immunohistochemical staining showed that key mitophagy factors including PINK1, MFN2, and PARKIN were highly expressed in various cell types of testis during the breeding season. In addition, the abundance and enzymatic activities of mitochondrial-localized antioxidative enzymes superoxide dismutase 2 (SOD2) and Catalase were decreased in the testis during the breeding season, suggesting a tightly controlled redox balance at least partially facilitated by mitophagy during the seasonal breeding. Taken together, our study reveals that mitochondrial autophagy and oxidative stress may be implicated in the seasonal reproductive recrudescence of the wild ground squirrels, which deepens our understanding of the mitochondrial regulation of seasonal reproductivity in wildlife and provides new insights into the development of potential therapeutic interventions of male infertility.
Collapse
Affiliation(s)
- Yuhan Wang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Ruting Su
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Pinxuan Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Seasonal Changes in the Distinct Taxonomy and Function of the Gut Microbiota in the Wild Ground Squirrel ( Spermophilus dauricus). Animals (Basel) 2021; 11:ani11092685. [PMID: 34573650 PMCID: PMC8469230 DOI: 10.3390/ani11092685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
Seasonal breeding is a normal phenomenon in which animals adapt to natural selection and reproduce only in specific seasons. Large studies have reported that the gut microbiota is closely related to reproduction. The purpose of this study was to explore the distinct taxonomy and function of the gut microbiota in the breeding and non-breeding seasons of the wild ground squirrel (Spermophilus dauricus). The 16S rRNA gene sequencing technology was utilized to sequence the gut microbiota of the wild ground squirrel. PICRUSt analysis was also applied to predict the function of the gut microbiota. The results suggested that the main components of the gut microbiota in all samples were Firmicutes (61.8%), Bacteroidetes (32.4%), and Proteobacteria (3.7%). Microbial community composition analyses revealed significant differences between the breeding and non-breeding seasons. At the genus level, Alistipes, Mycoplasma, Anaerotruncus, and Odoribacter were more abundant in the non-breeding season, while Blautia and Streptococcus were more abundant in the breeding season. The results of a functional prediction suggested that the relative abundance of functional categories that were related to lipid metabolism, carbohydrate metabolism, and nucleotide metabolism increased in the breeding season. The relative abundance of energy metabolism, transcription, and signal transduction increased in the non-breeding season. Overall, this study found differences in the taxonomy and function of the gut microbiota of the wild ground squirrel between the breeding and non-breeding seasons, and laid the foundation for further studies on the relationship between the gut microbiota and seasonal breeding.
Collapse
|
7
|
Yao Y, Xie W, Chen D, Han Y, Yuan Z, Zhang H, Weng Q. Seasonal expressions of VEGF and its receptors VEGFR1 and VEGFR2 in the prostate of the wild ground squirrels (<em>Spermophilus dauricus</em>). Eur J Histochem 2021; 65. [PMID: 33764018 PMCID: PMC8033528 DOI: 10.4081/ejh.2021.3219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/03/2021] [Indexed: 11/22/2022] Open
Abstract
As a vital male accessory reproductive gonad, the prostate requires vascular endothelial growth factors for promoting its growth and development. In this study, we investigated the localizations and expressions of vascular endothelial growth factor (VEGF) and its receptors including VEGF-receptor1 (VEFGR1) and VEGF-receptor2 (VEGFR2) in the prostate of the wild ground squirrels during the breeding and the non-breeding seasons. The values of total prostate weight and volume in the breeding season were higher than those in the non-breeding season. Histological observations showed that the exocrine lumens of the prostate expanded in the breeding season and contracted in the non-breeding season. The mRNA expression levels of VEGF and VEGFR2 in the prostate were higher in the breeding season than those in the non-breeding season, but the mRNA expression level of VEGFR1 had no significant change between the breeding and non-breeding seasons. Immunohistochemical results revealed that VEGF, VEGFR1 and VEGFR2 were presented in epithelial and stromal cells during the breeding and non-breeding seasons. In addition, the microvessels of the prostate were widely distributed and the number of microvessels increased obviously in the breeding season, while decreased sharply in the non-breeding season. These results suggested that expression levels of VEGF and VEGFR2 might be correlated with seasonal changes in morphology and functions of the prostate, and VEGF might serve as pivotal regulators to affect seasonal changes in the prostate functions of the wild male ground squirrels via an autocrine/paracrine pathway.
Collapse
Affiliation(s)
- Yuchen Yao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Di Chen
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| |
Collapse
|
8
|
Pellicciari C. Twenty years of histochemistry in the third millennium, browsing the scientific literature. Eur J Histochem 2020; 64. [PMID: 33478199 PMCID: PMC7789425 DOI: 10.4081/ejh.2020.3213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022] Open
Abstract
Over the last twenty years, about 240,000 articles where histochemical techniques were used have been published in indexed journals, and their yearly number has progressively increased. The histochemical approach was selected by researchers with very different scientific interests, as the journals in which these articles were published fall within 140 subject categories. The relative proportion of articles in some of these journal categories did change over the years, and browsing the table of contents of the European Journal of Histochemistry, as an example of a strictly histochemical journal, it appeared that in recent years histochemical techniques were preferentially used to mechanistically investigate natural or experimentally induced dynamic processes, with reduced attention to purely descriptive works. It may be foreseen that, in the future, histochemistry will be increasingly focused on studying the molecular pathways responsible for cell differentiation, the maintenance or loss of the differentiated state, and tissue regeneration.
Collapse
|
9
|
Yu W, Zhang Z, Liu P, Yang X, Zhang H, Yuan Z, Han Y, Weng Q. Seasonal expressions of SPAG11A and androgen receptor in the epididymis of the wild ground squirrels (<em>Citellus dauricus</em> Brandt). Eur J Histochem 2020; 64. [PMID: 32363846 PMCID: PMC7186593 DOI: 10.4081/ejh.2020.3111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Sperm-associated antigen 11A (SPAG11A), a protein expressed exclusively in the epididymis, plays a vital and special role in regulating mammalian sperm maturation. The aim of this study was to investigate the seasonal expressions of SPAG11A and androgen receptor (AR) in the epididymis of the wild ground squirrels (Spermophilus dauricus Brandt). Morphologically, the results showed that epididymis length and weight in the breeding season were significantly higher than those of the non-breeding season. Histologically, the results revealed that enlarged lumen diameters, thickened epithelium and abundant sperm in the breeding season while reduced lumen diameters and epithelium with no sperm in the non-breeding season. SPAG11A was intensely expressed in cytoplasm and nucleus of epithelial cells and smooth muscle cells in the breeding season, and weaker staining in the non-breeding season. In the lumen of epididymis, SPAG11A immunostaining in the sperm of the epididymal corpus and cauda was higher than those in the caput during the breeding season. The immunostaining of AR was only presented in nucleus of smooth muscle cells and epithelial cells in the epididymis from the breeding season rather than the non-breeding season. The results of real-time quantitative PCR also showed that the mRNA levels of SPAG11A and AR in the epididymis during the breeding season were significantly higher than those of the non-breeding season. In addition, the circulating testosterone, follicle- stimulating hormone and luteinizing hormone levels in the squirrels were higher in the breeding season compared with those in the non-breeding season. Taken together, these results implied that SPAG11A might be involved in regulating seasonal changes in epididymal functions of the wild ground squirrels.
Collapse
Affiliation(s)
- Wenyang Yu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Ziwen Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Pei Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Xiaoying Yang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| |
Collapse
|
10
|
Rosati L, Prisco M, Di Lorenzo M, De Falco M, Andreuccetti P. Immunolocalization of aromatase P450 in the epididymis of Podarcis sicula and Rattus rattus. Eur J Histochem 2020; 64:3080. [PMID: 31988532 PMCID: PMC7029622 DOI: 10.4081/ejh.2020.3080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/08/2020] [Indexed: 02/08/2023] Open
Abstract
The goal of this study was to evaluate P450 aromatase localization in the epididymis of two different vertebrates: the lizard Podarcis sicula, a seasonal breeder, and Rattus rattus, a continuous breeder. P450 aromatase is a key enzyme involved in the local control of spermatogenesis and steroidogenesis and we proved for the first time that this enzyme is represented in the epididymis of both P. sicula and R. rattus. In details, P450 aromatase was well represented in epithelial and myoid cells and in the connective tissue of P. sicula epididymis during the reproductive period; instead, during autumnal resumption this enzyme was absent in the connective tissue. During the non-reproductive period, P450 aromatase was localized only in myoid cells of P. sicula epididymis, whereas in R. rattus it was localized both in myoid cells and connective tissue. Our findings, the first on the epididymis aromatase localization in the vertebrates, suggest a possible role of P450 aromatase in the control of male genital tract function, particularly in sperm maturation.
Collapse
Affiliation(s)
- Luigi Rosati
- Department of Biology, University of Naples Federico II.
| | | | | | | | | |
Collapse
|
11
|
Santiago CS, Albernaz ESS, Santos RTS, Guerra LHA, Santos FCA, Góes RM, Morielle-Versute E, Taboga SR, Beguelini MR. Evaluation of the uterine hormonal control of the bat Artibeus lituratus during the different phases of its reproductive cycle. J Morphol 2020; 281:302-315. [PMID: 31904879 DOI: 10.1002/jmor.21098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/03/2019] [Accepted: 12/22/2019] [Indexed: 12/24/2022]
Abstract
Artibeus lituratus is a frugivorous bat that directly assists in the restoration of degraded habitats through the effective dispersion of seeds and fruits. Given its great importance, this work aimed to evaluate the uterine hormonal control of A. lituratus during its different reproductive phases. The uteri of 30 sexually mature adult females, five specimens for each of the six sample groups (NON, nonreproductive; P1, initial pregnancy; P2, intermediate pregnancy; P3, advanced pregnancy; LAC, lactating; P + LAC, pregnant-lactating), were submitted to analyses of serum estradiol and progesterone concentrations, in addition to immunohistochemical analyses. Both estradiol and progesterone, gradually increased during pregnancy, with a marked significant increase in P3 females. Both returned to low levels in LAC-females; however, estradiol levels decreased further in P + LAC-females, while progesterone increased in the same group. In general, signs indicative of aromatase expression were observed in the endometrium of all analyzed groups and in the placenta of bats in the gestation groups. Similarly, ERα and PR were expressed in the myometrium, endometrium and placenta at varying levels of intensity. The results indicate that the uterine microenvironment of A. lituratus is directly regulated by serum concentrations of estradiol and progesterone, and fluctuations in these concentrations control morphological and physiological changes of this organ during different phases of the reproductive cycle. RESEARCH HIGHLIGHTS: Increases in serum concentrations of estradiol and progesterone coordinate the gestational period of A. lituratus. Estradiol activates ERα, stimulating cell proliferation in the uterus, in addition to activating the expression of PR, which trigger the quiescence of the myometrium and stimulation of the secretion and differentiation of the endometrium. Results showed several similarities to humans, indicating the use of A. lituratus as an animal model in reproductive studies.
Collapse
Affiliation(s)
- Cornélio S Santiago
- Center of Biological and Health Science, UFOB - Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | - Edna S S Albernaz
- Center of Biological and Health Science, UFOB - Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | - Renata T S Santos
- Center of Biological and Health Science, UFOB - Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | - Luiz H A Guerra
- Department of Biology, UNESP - Univ. Estadual Paulista, São José do Rio Preto, São Paulo, Brazil
| | - Fernanda C A Santos
- Department of Histology and Embryology, UFG - Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rejane M Góes
- Department of Biology, UNESP - Univ. Estadual Paulista, São José do Rio Preto, São Paulo, Brazil
| | - Eliana Morielle-Versute
- Department of Zoology and Botany, UNESP - Univ. Estadual Paulista, São José do Rio Preto, São Paulo, Brazil
| | - Sebastião R Taboga
- Department of Biology, UNESP - Univ. Estadual Paulista, São José do Rio Preto, São Paulo, Brazil
| | - Mateus R Beguelini
- Center of Biological and Health Science, UFOB - Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| |
Collapse
|
12
|
Wang Y, Yao Y, Zhang C, Guo Y, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal expressions of COX-1, COX-2 and EP4 in the uteri of the wild Daurian ground squirrels (Spermophilus dauricus). Prostaglandins Other Lipid Mediat 2019; 143:106343. [PMID: 31195125 DOI: 10.1016/j.prostaglandins.2019.106343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/08/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
Abstract
Prostaglandins (PGs) play a pivotal role in uterine reproductive process including maternal recognition of pregnancy, cell proliferation, and myometrium contractions in mammals. In this study, we investigated the immunolocalizations and expression levels of Prostaglandin E2 synthases cyclo-oxygenase (COX)-1 and COX-2, as well as one of PGE2 receptor subtypes 4 (EP4) in the uteri of the wild Daurian ground squirrels (Spermophilus dauricus) during the breeding and non-breeding seasons. Histologically, the thickness of endometrium: myometrium ratio in the uteri of the breeding season was higher than that of the non-breeding season. The immunostainings of COX-1, COX-2 and EP4 were observed in stromal cells, glandular cells and myometrium cells in the breeding and non-breeding seasons. The protein and mRNA expression levels of COX-1, COX-2 and EP4 were higher in the uteri of the breeding season than those of in the non-breeding season. The mean mRNA levels of COX-1, COX-2 and EP4 were positively correlated with uterine weights. In addition, the PGE2 concentration of uterine tissues as well as plasma PGE2, 17β-estradiol, progesterone, LH and FSH levels were also significantly higher in the breeding season compared to those of the non-breeding season. These results suggested that PGE2 might play an important autocrine or paracrine role in the regulation of seasonal changes in the uterine functions of the wild Daurian ground squirrels during the breeding and non-breeding seasons.
Collapse
Affiliation(s)
- Yu Wang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuchen Yao
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunjiao Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuanyuan Guo
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
13
|
Xie W, Liu H, Liu Q, Gao Q, Gao F, Han Y, Yuan Z, Zhang H, Weng Q. Seasonal expressions of prolactin, prolactin receptor and STAT5 in the scented glands of the male muskrats (Ondatra zibethicus). Eur J Histochem 2019; 63. [PMID: 30652434 PMCID: PMC6340307 DOI: 10.4081/ejh.2019.2991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/19/2018] [Indexed: 01/31/2023] Open
Abstract
Prolactin (PRL) production in mammals has been demonstrated in extrapituitary gland, which can activate autocrine/ paracrine signaling pathways to regulate physiological activity. In the current study, we characterized the gene expression profiles of PRL, prolactin receptor (PRLR) and signal transducers and activators of transcription 5 (STAT5) in the scented glandular tissues of the muskrats, to further elucidate the relationship between PRL and the scented glandular functions of the muskrats. The weight and volume of the scented glands in the breeding season were significantly higher than those of the non-breeding season. Immunohistochemical data showed that PRL, PRLR and STAT5/phospho-STAT5 (pSTAT5) were found in the glandular and epithelial cells of the scented glands in both seasons. Furthermore, we found that PRL, PRLR and STAT5 had higher immunoreactivities in the scented glands during the breeding season when compared to those of the non-breeding season. In parallel, the gene expressions of PRL, PRLR and STAT5 were significantly higher in the scented glands during the breeding season than those of the non-breeding season. The concentrations of PRL in scented glandular tissues and sera were measured by enzymelinked immunosorbent assay (ELISA), and their levels were both notably higher in the breeding season than those of the nonbreeding season. These findings suggested that the scented glands of the muskrats were capable of extrapituitary synthesis of PRL, which might attribute PRL a specific function to an endocrine or autocrine/paracrine mediator.
Collapse
Affiliation(s)
- Wenqian Xie
- Beijing Forestry University, College of Biological Sciences and Technology, Laboratory of Animal Physiology.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pellicciari C. Histochemistry as a versatile research toolkit in biological research, not only an applied discipline in pathology. Eur J Histochem 2018; 62. [PMID: 30572698 PMCID: PMC6317132 DOI: 10.4081/ejh.2018.3006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022] Open
Abstract
The impressive progress of histochemistry over the last 50 years has led to setting up specific and sensitive techniques to describe dynamic events, through the detection of specific molecules in the very place where they exist in live cells. The scientific field where histochemistry has most largely been applied is histopathology, with the aim to identify disease-specific molecular markers or to elucidate the etiopathological mechanisms. Numerous authors did however apply histochemistry to a variety of other research fields; their interests range from the microanatomy of animal and plant organisms to the cellular mechanisms of life. This is especially apparent browsing the contents of the histochemical journals where the articles on subjects other than pathology are the majority; these journals still keep a pivotal role in the field of cell and tissue biology, while being a forum for a diverse range of biologists whose scientific interests expand the research horizon of histochemistry to ever novel subjects. Thus, histochemistry can always receive inspiring stimuli toward a continuous methodological refinement.
Collapse
Affiliation(s)
- Carlo Pellicciari
- University of Pavia, Department of Biology and Biotechnology "Lazzaro Spallanzani".
| |
Collapse
|