1
|
Zhang G, Liu JB, Yuan HL, Chen SY, Singer JH, Ke JB. Multiple Calcium Channel Types with Unique Expression Patterns Mediate Retinal Signaling at Bipolar Cell Ribbon Synapses. J Neurosci 2022; 42:6487-6505. [PMID: 35896423 PMCID: PMC9410755 DOI: 10.1523/jneurosci.0183-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Retinal bipolar cells (BCs) compose the canonical vertical excitatory pathway that conveys photoreceptor output to inner retinal neurons. Although synaptic transmission from BC terminals is thought to rely almost exclusively on Ca2+ influx through voltage-gated Ca2+ (CaV) channels mediating L-type currents, the molecular identity of CaV channels in BCs is uncertain. Therefore, we combined molecular and functional analyses to determine the expression profiles of CaV α1, β, and α2δ subunits in mouse rod bipolar (RB) cells, BCs from which the dynamics of synaptic transmission are relatively well-characterized. We found significant heterogeneity in CaV subunit expression within the RB population from mice of either sex, and significantly, we discovered that transmission from RB synapses was mediated by Ca2+ influx through P/Q-type (CaV2.1) and N-type (CaV2.2) conductances as well as the previously-described L-type (CaV1) and T-type (CaV3) conductances. Furthermore, we found both CaV1.3 and CaV1.4 proteins located near presynaptic ribbon-type active zones in RB axon terminals, indicating that the L-type conductance is mediated by multiple CaV1 subtypes. Similarly, CaV3 α1, β, and α2δ subunits also appear to obey a "multisubtype" rule, i.e., we observed a combination of multiple subtypes, rather than a single subtype as previously thought, for each CaV subunit in individual cells.SIGNIFICANCE STATEMENT Bipolar cells (BCs) transmit photoreceptor output to inner retinal neurons. Although synaptic transmission from BC terminals is thought to rely almost exclusively on Ca2+ influx through L-type voltage-gated Ca2+ (CaV) channels, the molecular identity of CaV channels in BCs is uncertain. Here, we report unexpectedly high molecular diversity of CaV subunits in BCs. Transmission from rod bipolar (RB) cell synapses can be mediated by Ca2+ influx through P/Q-type (CaV2.1) and N-type (CaV2.2) conductances as well as the previously-described L-type (CaV1) and T-type (CaV3) conductances. Furthermore, CaV1, CaV3, β, and α2δ subunits appear to obey a "multisubtype" rule, i.e., a combination of multiple subtypes for each subunit in individual cells, rather than a single subtype as previously thought.
Collapse
Affiliation(s)
- Gong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jun-Bin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - He-Lan Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Si-Yun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Jiang-Bin Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China,
| |
Collapse
|
2
|
Zhu M, Yan Y, Cao X, Zeng F, Xu G, Shen W, Li F, Luo L, Wang Z, Zhang Y, Zhang X, Zhang D, Liu T. Electrophysiological and Morphological Features of Rebound Depolarization Characterized Interneurons in Rat Superficial Spinal Dorsal Horn. Front Cell Neurosci 2021; 15:736879. [PMID: 34621158 PMCID: PMC8490703 DOI: 10.3389/fncel.2021.736879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
Substantia gelatinosa (SG) neurons, which are located in the spinal dorsal horn (lamina II), have been identified as the “central gate” for the transmission and modulation of nociceptive information. Rebound depolarization (RD), a biophysical property mediated by membrane hyperpolarization that is frequently recorded in the central nervous system, contributes to shaping neuronal intrinsic excitability and, in turn, contributes to neuronal output and network function. However, the electrophysiological and morphological properties of SG neurons exhibiting RD remain unclarified. In this study, whole-cell patch-clamp recordings were performed on SG neurons from parasagittal spinal cord slices. RD was detected in 44.44% (84 out of 189) of the SG neurons recorded. We found that RD-expressing neurons had more depolarized resting membrane potentials, more hyperpolarized action potential (AP) thresholds, higher AP amplitudes, shorter AP durations, and higher spike frequencies in response to depolarizing current injection than neurons without RD. Based on their firing patterns and morphological characteristics, we propose that most of the SG neurons with RD mainly displayed tonic firing (69.05%) and corresponded to islet cell morphology (58.82%). Meanwhile, subthreshold currents, including the hyperpolarization-activated cation current (Ih) and T-type calcium current (IT), were identified in SG neurons with RD. Blockage of Ih delayed the onset of the first spike in RD, while abolishment of IT significantly blunted the amplitude of RD. Regarding synaptic inputs, SG neurons with RD showed lower frequencies in both spontaneous and miniature excitatory synaptic currents. Furthermore, RD-expressing neurons received either Aδ- or C-afferent-mediated monosynaptic and polysynaptic inputs. However, RD-lacking neurons received afferents from monosynaptic and polysynaptic Aδ fibers and predominantly polysynaptic C-fibers. These findings demonstrate that SG neurons with RD have a specific cell-type distribution, and may differentially process somatosensory information compared to those without RD.
Collapse
Affiliation(s)
- Mengye Zhu
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Yi Yan
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Xuezhong Cao
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Fei Zeng
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Gang Xu
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Wei Shen
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Fan Li
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Lingyun Luo
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Zhijian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Yong Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Xuexue Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Daying Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Tao Liu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Pellicciari C. Twenty years of histochemistry in the third millennium, browsing the scientific literature. Eur J Histochem 2020; 64. [PMID: 33478199 PMCID: PMC7789425 DOI: 10.4081/ejh.2020.3213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022] Open
Abstract
Over the last twenty years, about 240,000 articles where histochemical techniques were used have been published in indexed journals, and their yearly number has progressively increased. The histochemical approach was selected by researchers with very different scientific interests, as the journals in which these articles were published fall within 140 subject categories. The relative proportion of articles in some of these journal categories did change over the years, and browsing the table of contents of the European Journal of Histochemistry, as an example of a strictly histochemical journal, it appeared that in recent years histochemical techniques were preferentially used to mechanistically investigate natural or experimentally induced dynamic processes, with reduced attention to purely descriptive works. It may be foreseen that, in the future, histochemistry will be increasingly focused on studying the molecular pathways responsible for cell differentiation, the maintenance or loss of the differentiated state, and tissue regeneration.
Collapse
|