1
|
Ravara B, Giuriati W, Zampieri S, Kern H, Pond AL. Translational mobility medicine and ugo carraro: a life of significant scientific contributions reviewed in celebration. Neurol Res 2024; 46:139-156. [PMID: 38043115 DOI: 10.1080/01616412.2023.2258041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/04/2023] [Indexed: 12/05/2023]
Abstract
Prof. Ugo Carraro reached 80 years of age on 23 February 2023, and we wish to celebrate him and his work by reviewing his lifetime of scientific achievements in Translational Myology. Currently, he is a Senior Scholar with the University of Padova, Italy, where, as a tenured faculty member, he founded the Interdepartmental Research Center of Myology. Prof. Carraro, a pioneer in skeletal muscle research, is a world-class expert in structural and molecular investigations of skeletal muscle biology, physiology, pathology, and care. An authority in bidimensional gel electrophoresis for myosin light chains, he was the first to separate mammalian muscle myosin heavy chain isoforms by SDS-gel electrophoresis. He has demonstrated that long-term denervated muscle can survive denervation by myofiber regeneration, and shown that an athletic lifestyle has beneficial impacts on muscle reinnervation. He has utilized his expertise in translational myology to develop and validate rehabilitative treatments for denervated and ageing skeletal muscle. He has authored more than 160 PubMed listed papers and numerous scholarly books, including his recent autobiography. Prof. Carraro founded and serves as Editor-in-Chief of the European Journal of Translational Myology and Mobility Medicine. He has organized more than 40 Padua Muscle Days Meetings and continues this, encouraging students and young scientists to participate. As he dreams endlessly, he is currently validating non-invasive analyses on saliva, a promising approach that will allow increased frequency sampling to analyze systemic factors during the transient effects of training and rehabilitation by his proposed Full-Body in- Bed Gym for bed-ridden elderly.
Collapse
Affiliation(s)
- Barbara Ravara
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
| | - Walter Giuriati
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
| | - Sandra Zampieri
- Department of Biomedical Sciences (DSB), University of Padova, Padua, Italy
- CIR-Myo Interdepartmental Research Center of Myology, University of Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology Sciences, Padua University Hospital, Padua, Italy
| | - Helmut Kern
- Physiko- und Rheumatherapie, Ludwig Boltzmann Institute for Rehabilitation Research, Sankt Pölten, Austria
| | - Amber L Pond
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
2
|
Molinari S, Imbriano C, Moresi V, Renzini A, Belluti S, Lozanoska-Ochser B, Gigli G, Cedola A. Histone deacetylase functions and therapeutic implications for adult skeletal muscle metabolism. Front Mol Biosci 2023; 10:1130183. [PMID: 37006625 PMCID: PMC10050567 DOI: 10.3389/fmolb.2023.1130183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Skeletal muscle is a highly adaptive organ that sustains continuous metabolic changes in response to different functional demands. Healthy skeletal muscle can adjust fuel utilization to the intensity of muscle activity, the availability of nutrients and the intrinsic characteristics of muscle fibers. This property is defined as metabolic flexibility. Importantly, impaired metabolic flexibility has been associated with, and likely contributes to the onset and progression of numerous pathologies, including sarcopenia and type 2 diabetes. Numerous studies involving genetic and pharmacological manipulations of histone deacetylases (HDACs) in vitro and in vivo have elucidated their multiple functions in regulating adult skeletal muscle metabolism and adaptation. Here, we briefly review HDAC classification and skeletal muscle metabolism in physiological conditions and upon metabolic stimuli. We then discuss HDAC functions in regulating skeletal muscle metabolism at baseline and following exercise. Finally, we give an overview of the literature regarding the activity of HDACs in skeletal muscle aging and their potential as therapeutic targets for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Susanna Molinari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Viviana Moresi
- Institute of Nanotechnology, Department of Physics, National Research Council (CNR-NANOTEC), Sapienza University of Rome, Rome, Italy
- *Correspondence: Viviana Moresi,
| | - Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy
| | - Alessia Cedola
- Institute of Nanotechnology, Department of Physics, National Research Council (CNR-NANOTEC), Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Berardi E, Madaro L, Lozanoska-Ochser B, Adamo S, Thorrez L, Bouche M, Coletti D. A Pound of Flesh: What Cachexia Is and What It Is Not. Diagnostics (Basel) 2021; 11:diagnostics11010116. [PMID: 33445790 PMCID: PMC7828214 DOI: 10.3390/diagnostics11010116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Body weight loss, mostly due to the wasting of skeletal muscle and adipose tissue, is the hallmark of the so-called cachexia syndrome. Cachexia is associated with several acute and chronic disease states such as cancer, chronic obstructive pulmonary disease (COPD), heart and kidney failure, and acquired and autoimmune diseases and also pharmacological treatments such as chemotherapy. The clinical relevance of cachexia and its impact on patients’ quality of life has been neglected for decades. Only recently did the international community agree upon a definition of the term cachexia, and we are still awaiting the standardization of markers and tests for the diagnosis and staging of cancer-related cachexia. In this review, we discuss cachexia, considering the evolving use of the term for diagnostic purposes and the implications it has for clinical biomarkers, to provide a comprehensive overview of its biology and clinical management. Advances and tools developed so far for the in vitro testing of cachexia and drug screening will be described. We will also evaluate the nomenclature of different forms of muscle wasting and degeneration and discuss features that distinguish cachexia from other forms of muscle wasting in the context of different conditions.
Collapse
Affiliation(s)
- Emanuele Berardi
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium; (E.B.); (L.T.)
- Faculty of Rehabilitation Sciences, REVAL, Hasselt University (UHasselt), 3590 Diepenbeek, Belgium
| | - Luca Madaro
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Biliana Lozanoska-Ochser
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Lieven Thorrez
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium; (E.B.); (L.T.)
| | - Marina Bouche
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
- Correspondence: ; Tel.: +39-(6)-4976-6755/6573
| | - Dario Coletti
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Institut de Biologie Paris-Seine, Sorbonne Université, 75006 Paris, France
| |
Collapse
|
4
|
Liu J, Wang Z, Shen D, Yang X, Liu M, Cui L. Split phenomenon of antagonistic muscle groups in amyotrophic lateral sclerosis: relative preservation of flexor muscles. Neurol Res 2020; 43:372-380. [PMID: 33372862 DOI: 10.1080/01616412.2020.1866354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective: In addition to the split hand sign, other split phenomena of different muscles also exist in amyotrophic lateral sclerosis (ALS). We analyzed the incidence of split phenomena in multiple antagonistic muscle groups in ALS patients and explored whether clinical factors affected their occurrence.Methods: 618 ALS patients were included from a single ALS center. Muscle strength in upper and lower limbs was evaluated using the modified Medical Research Council (MRC) scoring system (range from 1 to 13). Split phenomena between different antagonistic muscle groups were summarized, and the correlations with clinical factors were analyzed.Results: Split phenomena were detected in 22.3% antagonistic muscles for flexion and extension of the elbow, 11.9% for the wrist, 23.9% for fingers, 18.2% for the ankle, and 14.7% for toes. These manifestations were characterized by preferential wasting of the elbow, wrist, and finger extensor muscles compared with the flexor muscles, and the ankle and toe dorsiflexor muscles compared with the plantar flexor muscles. The presence of muscle wasting was more common when the muscle strength was stronger than a modified MRC grade 6. No definite correlation was found between split phenomena and clinical factors, including age-at-onset, gender, disease duration, the region of onset, and pyramidal tract damage.Discussion: Split phenomena of antagonistic muscle groups widely exist in ALS patients. No definitive and consistent clinical factors were observed that affected the occurrence of these phenomena.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhili Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Neurosciences Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Brain and Muscle: How Central Nervous System Disorders Can Modify the Skeletal Muscle. Diagnostics (Basel) 2020; 10:diagnostics10121047. [PMID: 33291835 PMCID: PMC7762031 DOI: 10.3390/diagnostics10121047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
It is widely known that nervous and muscular systems work together and that they are strictly dependent in their structure and functions. Consequently, muscles undergo macro and microscopic changes with subsequent alterations after a central nervous system (CNS) disease. Despite this, only a few researchers have addressed the problem of skeletal muscle abnormalities following CNS diseases. The purpose of this review is to summarize the current knowledge on the potential mechanisms responsible for changes in skeletal muscle of patients suffering from some of the most common CSN disorders (Stroke, Multiple Sclerosis, Parkinson’s disease). With this purpose, we analyzed the studies published in the last decade. The published studies show an extreme heterogeneity of the assessment modality and examined population. Furthermore, it is evident that thanks to different evaluation methodologies, it is now possible to implement knowledge on muscle morphology, for a long time limited by the requirement of muscle biopsies. This could be the first step to amplify studies aimed to analyze muscle characteristics in CNS disease and developing rehabilitation protocols to prevent and treat the muscle, often neglected in CNS disease.
Collapse
|
6
|
Wang X, Ye L, Zhang K, Gao L, Xiao J, Zhang Y. Upregulation of microRNA-200a in bone marrow mesenchymal stem cells enhances the repair of spinal cord injury in rats by reducing oxidative stress and regulating Keap1/Nrf2 pathway. Artif Organs 2020; 44:744-752. [PMID: 31995644 DOI: 10.1111/aor.13656] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) is a common disease with high incidence, disability rate and treatment cost. microRNA (miR)-200a is reported to inhibit Keap1 to activate Nrf2 signaling. This study aimed to explore the effects of lentivirus-mediated miR-200a gene-modified bone marrow mesenchymal stem cells (BMSCs) transplantation on the repair of SCI in a rat model. BMSCs were isolated from the bone marrow of Sprague-Dawley rats. MiR-200a targeting to Keap1 was identified by luciferase reporter gene assay. The expressions of Keap1, nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H-dependent quinone oxidoreductase 1 (NQO-1), heme oxygenase-1 (HO-1) and glutamate-cysteine ligase catalytic subunit (GCLC) were detected by Western blotting in SCI rats. The locomotor capacity of the rats was evaluated using the Basso, Beattie, and Bresnahan scale. The levels of malondialdehyde (MDA), activities of superoxide dismutase (SOD), and catalase (CAT) were measured. miR-200a inhibited Keap-1 3' UTR activity in BMSCs. Transplantation of BMSCs with overexpression of miR-200a or si-Keap1 increased locomotor function recovery of rats after SCI, while decreased MDA level, increased SOD, CAT activities, and Nrf2 expression together with its downstream HO-1, NQO1, GCLC protein expressions in SCI rat. These results indicated that overexpressed miR-200a in BMSCs promoted SCI repair, which may be through regulating antioxidative signaling pathway.
Collapse
Affiliation(s)
- Xianxiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Ye
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu Gao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jin Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiquan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|