1
|
Seman ZA, Ahid F, Kamaluddin NR, Sahid ENM, Esa E, Said SSM, Azman N, Mat WKDW, Abdullah J, Ali NA, Khalid MKNM, Yusoff YM. Mutation analysis of BCR-ABL1 kinase domain in chronic myeloid leukemia patients with tyrosine kinase inhibitors resistance: a Malaysian cohort study. BMC Res Notes 2024; 17:111. [PMID: 38643202 PMCID: PMC11031984 DOI: 10.1186/s13104-024-06772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/15/2024] [Indexed: 04/22/2024] Open
Abstract
OBJECTIVE Mutational analysis of BCR::ABL1 kinase domain (KD) is a crucial component of clinical decision algorithms for chronic myeloid leukemia (CML) patients with failure or warning responses to tyrosine kinase inhibitor (TKI) therapy. This study aimed to detect BCR::ABL1 KD mutations in CML patients with treatment resistance and assess the concordance between NGS (next generation sequencing) and Sanger sequencing (SS) in detecting these mutations. RESULTS In total, 12 different BCR::ABL1 KD mutations were identified by SS in 22.6% (19/84) of patients who were resistant to TKI treatment. Interestingly, NGS analysis of the same patient group revealed an additional four different BCR::ABL1 KD mutations in 27.4% (23/84) of patients. These mutations are M244V, A344V, E355A, and E459K with variant read frequency below 15%. No mutation was detected in 18 patients with optimal response to TKI therapy. Resistance to TKIs is associated with the acquisition of additional mutations in BCR::ABL1 KD after treatment with TKIs. Additionally, the use of NGS is advised for accurately determining the mutation status of BCR::ABL1 KD, particularly in cases where the allele frequency is low, and for identifying mutations across multiple exons simultaneously. Therefore, the utilization of NGS as a diagnostic platform for this test is very promising to guide therapeutic decision-making.
Collapse
Affiliation(s)
- Zahidah Abu Seman
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia
| | - Fadly Ahid
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia.
- Stem Cell and Regenerative Medicine Research Initiative Group, Universiti Teknologi MARA, Shah Alam, Selangor, 40450, Malaysia.
| | - Nor Rizan Kamaluddin
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Ermi Neiza Mohd Sahid
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Ezalia Esa
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Siti Shahrum Muhamed Said
- Department of Pathology, Hospital Tunku Azizah, Ministry of Health Malaysia, Kuala Lumpur, Kuala Lumpur, WP, 50300, Malaysia
| | - Norazlina Azman
- Department of Pathology, Hospital Tunku Azizah, Ministry of Health Malaysia, Kuala Lumpur, Kuala Lumpur, WP, 50300, Malaysia
| | - Wan Khairull Dhalila Wan Mat
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Julia Abdullah
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Nurul Aqilah Ali
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Mohd Khairul Nizam Mohd Khalid
- Inborn Error of Metabolism and Genetic Unit, Metabolic & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Nutrition, Shah Alam, Selangor, 40170, Malaysia
| | - Yuslina Mat Yusoff
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia.
| |
Collapse
|
2
|
Mohamad SFS, Elias MH. Potential treatment for chronic myeloid leukemia using microRNA: in silico comparison between plants and human microRNAs in targeting BCR-ABL1 gene. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00156-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the expression of the BCR-ABL1 fusion gene. Tyrosine kinase inhibitors (TKI) are used to treat CML, but mutations in the tyrosine kinase domain contribute to CML chemo-resistance. Therefore, finding alternative molecular-targeted therapy is important for the comprehensive treatment of CML. MicroRNAs (miRNA) are small non-coding regulatory RNAs which suppress the expression of their target genes by binding to the 3′ untranslated region (3′UTR) of the target mRNA. Hypothetically, the miRNA-mRNA interaction would suppress BCR-ABL1 expression and consequently reduce and inhibit CML cell proliferation. Thus, our objective was to determine the target interaction of human and plant miRNAs targeting the 3′UTR region of BCR-ABL1 in terms of miRNA binding conformity, protein interaction network, and pathways using in silico analysis. The 3′UTR sequence of BCR-ABL1 is obtained from Ensembl Genome Browser while the binding conformity was determined using the PsRNATarget Analysis Server, RNA22, Target Rank Server, and DIANA TOOLS. Protein-protein interaction network and pathway analysis are determined using STRING, Cytoscape, and KEGG pathway analysis.
Results
Five plants and five human miRNAs show strong binding conformity with 3′UTR of BCR-ABL1. The strongest binding conformity was shown by Oryza sativa’s Osa-miR1858a and osa-miR1858b with −24.4 kcal/mol folding energy and a p value of 0.0077. Meanwhile, in human miRNA, the hsa-miR-891a-3p shows the highest miTG score of 0.99 with −12 kcal/mol folding energy and a p value of 0.037. Apart from ABL1, osa-miR1858a/osa-miR1858b and hsa-miR891a-3p also target other 720 and 645 genes, respectively. The interaction network of Osa-miR1858a/osa-miR1858b and hsa-miR891a-3p identifies nineteen and twelve ABL1’s immediate neighboring proteins, respectively. The pathways analysis focuses on the RAS, MAPK, CML, and hematopoietic cell lineage pathway.
Conclusion
Both plant and human miRNAs tested in this study could be a potential therapeutic prospect in CML treatment, but thermodynamically, osa-miR1858a/osa-miR1858b binding to ABL1 is more favorable. However, it is important to carry out more research in vitro and in vivo and clinical studies to assess its efficacy as a targeted therapy for CML.
Graphical abstract
Collapse
|
3
|
Mat Yusoff Y, Abu Seman Z, Othman N, Kamaluddin NR, Esa E, Zulkiply NA, Abdullah J, Zakaria Z. Prevalence of BCR-ABL T315I Mutation in Malaysian Patients with Imatinib-Resistant Chronic Myeloid Leukemia. Asian Pac J Cancer Prev 2018; 19:3317-3320. [PMID: 30583336 PMCID: PMC6428553 DOI: 10.31557/apjcp.2018.19.12.3317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective: Chronic Myeloid Leukemia (CML) is caused by a reciprocal translocation between chromosomes 9 and 22, t(9;22) (q34;q11) which encodes for the BCR-ABL fusion protein. Discovery of Imatinib Mesylate (IM) as first line therapy has brought tremendous improvement in the management of CML. However, emergence of point mutations within the BCR-ABL gene particularly T315I mutation, affects a common BCR-ABL kinase contact residue which impairs drug binding thus contribute to treatment resistance. This study aims to investigate the BCR-ABL T315I mutation in Malaysian patients with CML. Methods: A total of 285 patients diagnosed with CML were included in this study. Mutation detection was performed using qualitative real-time PCR (qPCR). Results: Fifteen out of 285 samples (5.26%) were positive for T315I mutations after amplification with real-time PCR assay. From the total number of positive samples, six patients were in accelerated phase (AP), four in chronic phase (CP) and five in blast crisis (BC). Conclusion: Mutation testing is recommended for choosing various tyrosine kinase inhibitors (TKIs) to optimize outcomes for both cases of treatment failure or suboptimal response to imatinib. Therefore, detection of T315I mutation in CML patients are clinically useful in the selection of appropriate treatment strategies to prevent disease progression.
Collapse
Affiliation(s)
- Yuslina Mat Yusoff
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Analysis of ABL kinase domain mutations as a probable cause of imatinib resistance in Chronic Myeloid Leukemia patients of Kashmir. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Elias MH, Azlan H, Sulong S, Baba AA, Ankathil R. Aberrant DNA methylation at HOXA4 and HOXA5 genes are associated with resistance to imatinib mesylate among chronic myeloid leukemia patients. Cancer Rep (Hoboken) 2018; 1:e1111. [PMID: 32721103 DOI: 10.1002/cnr2.1111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Imatinib mesylate is a molecularly targeted tyrosine kinase inhibitor drug. It is effectively used in the treatment of chronic myeloid leukemia (CML) patients. However, development of resistance to imatinib mesylate as a result of BCR-ABL dependent and BCR-ABL independent mechanisms has emerged as a daunting problem in the management of CML patients. Between these mechanisms, BCR-ABL independent mechanisms are still not robustly understood. AIM To investigate the correlation of HOXA4 and HOXA5 promoter DNA hypermethylation with imatinib resistance among CML patients. METHODS AND RESULTS Samples from 175 Philadelphia positive CML patients (83 good response and 92 BCR-ABL non-mutated imatinib resistant patients) were subjected to Methylation Specific High Resolution Melt Analysis for methylation levels quantification of the HOXA4 and HOXA5 promoter regions. Receiver operating characteristic curve analysis was done to elucidate the optimal methylation cut-off point followed by multiple logistic regression analysis. Log-Rank analysis was done to measure the overall survival difference between CML groups. The optimal methylation cut-off point was found to be at 62.5% for both HOXA4 and HOXA5. Chronic myeloid leukemia patients with ≥63% HOXA4 and HOXA5 methylation level were shown to have 3.78 and 3.95 times the odds, respectively, to acquire resistance to imatinib. However, overall survival of CML patients that have ≤62% and ≥ 63% methylation levels of HOXA4 and HOXA5 genes were found to be not significant (P-value = 0.126 for HOXA4; P-value = 0.217 for HOXA5). CONCLUSION Hypermethylation of the HOXA4 and HOXA5 promoter is correlated with imatinib resistance and with further investigation, it could be a potential epigenetic biomarker in supplement to the BCR-ABL gene mutation in predicting imatinib treatment response among CML patients but could not be considered as a prognostic marker.
Collapse
Affiliation(s)
- Marjanu Hikmah Elias
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Husin Azlan
- Haemato-Oncology Unit, Department of Internal Medicine, Universiti Sains Malaysia Hospital, Kota Bharu, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
6
|
Rejali L, Poopak B, Hasanzad M, Sheikhsofla F, Varnoosfaderani AS, Safari N, Rabieipoor S. Characterizing of Four Common BCR-ABL Kinase Domain Mutations (T315I, Y253H, M351T and E255K) in Iranian Chronic Myelogenous Leukemia Patients With Imatinib Resistance. IRANIAN JOURNAL OF CANCER PREVENTION 2015; 8:e2334. [PMID: 26413254 PMCID: PMC4581365 DOI: 10.17795/ijcp2334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/01/2015] [Accepted: 03/10/2015] [Indexed: 11/25/2022]
Abstract
Background: Chronic myelogenous leukemia (CML) is a kind of hematopoietic stem-cell cancer. A significant number of CML patients who do not achieve an acceptable response to therapy, show acquired resistance against Imatinib. One of the most considerable causes of resistance against Imatinib as the first line of therapy, are BCR-ABL kinase domain mutations. Objectives: One of the most considerable causes of resistance against Imatinib as the first line of therapy, are BCR-ABL kinase domain mutations. Patients and Methods: The study was performed on 39 CML patients with Imatinib resistance. Basic hematologic parameters in blood samples were checked to identify hematologic response. To identify molecular response, BCR-ABL/ABL ratio was assessed by Real-time PCR. The ABL kinase domain amplification was performed by PCR. Restriction fragment length polymorphism (RFLP) was performed to detect four common mutations (T315I, Y253H, E255K and M351T). Finally the results were approved by direct sequencing. Results: In this study, the Y253H mutation, detected by RFLP method and confirmed by direct sequencing, was the prevalent ABL kinase domain mutation in these 39 CML patients. The G250E, V379I and L384M mutations were found in three different cases with failure molecular response. CML patients with these four ABL kinase domain mutations cannot achieve major molecular response (MMR). In addition, complete hematologic response (CHR) was observed only in the V379I mutated case and not in other mutated patients. Conclusions: Identification of ABL kinase domain mutations may be used as a proper and useful method for improving therapeutic strategies, avoiding delay in treatment and excessive expenditure in CML patients with Imatinib resistance.
Collapse
Affiliation(s)
- Leili Rejali
- MSc in Molecular Genetics, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, IR Iran
| | - Behzad Poopak
- DCLS, PhD in Hematology, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, IR Iran
| | - Mandana Hasanzad
- PhD in Molecular Genetics, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, IR Iran
| | - Fatemeh Sheikhsofla
- MSc in Cell and Molecular Biology, Payvand Clinical and Specialty Laboratory, Tehran, IR Iran
| | | | - Nazila Safari
- MSc in Molecular Oncology, Payvand Clinical and Specialty,Tehran, IR Iran
| | - Saghar Rabieipoor
- MSc in Biotechnology, Payvand Clinical and Specialty Laboratory,Tehran, IR Iran
| |
Collapse
|
7
|
Fujii A, Harada T, Iwama E, Ota K, Furuyama K, Ijichi K, Okamoto T, Okamoto I, Takayama K, Nakanishi Y. Hypermethylation of the CpG dinucleotide in epidermal growth factor receptor codon 790: implications for a mutational hotspot leading to the T790M mutation in non-small-cell lung cancer. Cancer Genet 2015; 208:271-8. [PMID: 25682017 DOI: 10.1016/j.cancergen.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/25/2014] [Accepted: 12/27/2014] [Indexed: 11/30/2022]
Abstract
Nearly one half of all cases of acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) for non-small-cell lung cancer (NSCLC) are due to the T790M mutation in EGFR exon 20. The T790M mutation is a C→T transition mutation at a CpG dinucleotide. DNA methylation of cytosine (5-methylcytosine (5-mC)) in CpG dinucleotides is a common DNA modification; CpG dinucleotides are considered to be mutational hotspots that cause genetic diseases and cancers through spontaneous deamination of 5-mC, resulting in C→T transition mutations. This study aimed to examine the methylation level of cytosine of EGFR codon 790 and investigate whether DNA methylation was involved in acquiring the T790M mutation. We examined 18 NSCLC tumor tissues, 7 normal lymph node tissues, and 4 NSCLC cell lines (PC9, HCC827, 11-18, and A549). 5-mC was checked by bisulfite sequencing and quantified by pyrosequencing. We found that all tissue samples and cell lines had 5-mC in EGFR codon 790. The 5-mC range was 58.4-90.8%. Our results imply that hypermethylation of the CpG dinucleotide in EGFR codon 790 leads to the C→T transition mutation, causing resistance to EGFR-TKI treatment.
Collapse
Affiliation(s)
- Akiko Fujii
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taishi Harada
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Eiji Iwama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Faculty of Medical Sciences, Department of Comprehensive Clinical Oncology, Kyushu University, Fukuoka, Japan
| | - Keiichi Ota
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuto Furuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kayo Ijichi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Center for Clinical and Traditional Research, Kyushu University Hospital, Fukuoka, Japan
| | - Koichi Takayama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Elias MH, Baba AA, Azlan H, Rosline H, Sim GA, Padmini M, Fadilah SAW, Ankathil R. BCR-ABL kinase domain mutations, including 2 novel mutations in imatinib resistant Malaysian chronic myeloid leukemia patients-Frequency and clinical outcome. Leuk Res 2014; 38:454-9. [PMID: 24456693 DOI: 10.1016/j.leukres.2013.12.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/26/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
Abstract
Discovery of imatinib mesylate (IM) as the targeted BCR-ABL protein tyrosine kinase inhibitor (TKI) has resulted in its use as the frontline therapy for chronic myeloid leukemia (CML) across the world. Although high response rates are observed in CML patients who receive IM treatment, a significant number of patients develop resistance to IM. Resistance to IM in patients has been associated with a heterogeneous array of mechanisms of which point mutations within the ABL tyrosine kinase domain (TKD) are the frequently documented. The types and frequencies of mutations reported in different population studies have shown wide variability. We screened 125 Malaysian CML patients on IM therapy who showed either TKI refractory or resistance to IM to investigate the frequency and pattern of BCR-ABL kinase domain mutations among Malaysian CML patients undergoing IM therapy and to determine the clinical significance. Mutational screening using denaturing high performance liquid chromatography (dHPLC) followed by DNA sequencing was performed on 125 IM resistant Malaysian CML patients. Mutations were detected in 28 patients (22.4%). Fifteen different types of mutations (T315I, E255K, G250E, M351T, F359C, G251E, Y253H, V289F, E355G, N368S, L387M, H369R, A397P, E355A, D276G), including 2 novel mutations were identified, with T315I as the predominant type of mutation. The data generated from clinical and molecular parameters studied were correlated with the survival of CML patients. Patients with Y253H, M351T and E355G TKD mutations showed poorer prognosis compared to those without mutation. Interestingly, when the prognostic impact of the observed mutations was compared inter-individually, E355G and Y253H mutations were associated with more adverse prognosis and shorter survival (P=0.025 and 0.005 respectively) than T315I mutation. Results suggest that apart from those mutations occurring in the three crucial regions (catalytic domain, P-loop and activation-loop), other rare mutations also may have high impact in the development of resistance and adverse prognosis. Presence of mutations in different regions of BCR-ABL TKD leads to different levels of resistance and early detection of emerging mutant clones may help in decision making for alternative treatment. Serial monitoring of BCR-ABL1 transcripts in CML patients allows appropriate selection of CML patients for BCR-ABL1 KD mutation analysis associated with acquired TKI resistance. Identification of these KD mutations is essential in order to direct alternative treatments in such CML patients.
Collapse
Affiliation(s)
- Marjanu Hikmah Elias
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Malaysia
| | - Abdul Aziz Baba
- Haemato-Oncology Unit, Department of Internal Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Malaysia
| | - Husin Azlan
- Haemato-Oncology Unit, Department of Internal Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Malaysia
| | - Hassan Rosline
- Hematology Department, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Malaysia
| | | | | | | | - Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Malaysia.
| |
Collapse
|