May PB, Winters SJ. Weight-Bearing Physical Activity Influences the Effect of Vitamin D on Bone Turnover Markers in Patients with Intellectual Disability.
South Med J 2019;
112:428-432. [PMID:
31375839 DOI:
10.14423/smj.0000000000001010]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES
Individuals with intellectual disabilities (IDs) are at increased risk for low bone mass and fragility fractures, and those who are nonambulatory may be at even higher risk. Patients with IDs often are vitamin D deficient, but there is little information concerning how vitamin D treatment of patients with IDs affects markers of bone formation and resorption.
METHODS
We performed a retrospective analysis of 23 institutionalized individuals with IDs who were the subject of a performance improvement continuing medical education project designed to reduce risk for fracture by optimizing serum vitamin D levels. Patients were divided into those with normal weight-bearing (NWB) physical activity (15 patients: 14 men, 1 woman) and those with low weight-bearing (LWB) physical activity (8 patients: 7 men, 1 woman). All of the subjects received 50,000 IU of vitamin D3 weekly for 4 to 8 weeks, followed by a maintenance dose of 50,000 IU monthly for 3 to 6 months. Bone turnover markers (type 1 cross-linked C-telopeptide [CTX], type 1 N-terminal propeptide [P1NP], and parathyroid hormone [PTH]) and 25(OH)-vitamin D levels were measured before and after vitamin D supplementation.
RESULTS
At baseline, there were no significant differences in the serum levels of 25OH-D, PTH, P1NP, or CTX between the two groups (NWB and LWB). Vitamin D levels were increased to a higher value in LWB subjects than in NWB subjects (61 ± 4.1 vs 48.4 ± 2.2 ng/mL, P < 0.001). Vitamin D treatment suppressed PTH (20.5% ± 14.3% vs 31.4% ± 7.7%, P = not significant) and P1NP (33.0% ± 6.2% vs 29.4% ± 6.9%, P = not significant) similarly in both groups. Although CTX levels declined by 26.4% ± 5.3% (P = 0.0002) in NWB individuals (as anticipated), vitamin D supplementation resulted in an unexpected 25.8% ± 8% increase (P = 0.01) in CTX in LWB individuals, suggesting osteoclast activation.
CONCLUSIONS
Although high-dose vitamin D appeared to suppress osteoclast activity in NWB adults with IDs, the increase in serum CTX levels in those with LWB activity implies activation of osteoclasts that could exacerbate their unique low bone mass and increase fracture risk. The results support the use of a lower-dose vitamin D regimen in this patient group with LWB.
Collapse