1
|
Makmur M, Zain M, Sholikin MM, Suharlina, Jayanegara A. Modulatory effects of dietary tannins on polyunsaturated fatty acid biohydrogenation in the rumen: A meta-analysis. Heliyon 2022; 8:e09828. [PMID: 35815140 PMCID: PMC9263859 DOI: 10.1016/j.heliyon.2022.e09828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/21/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022] Open
Abstract
Background Tannins are a group of phenolic compounds that can modify the rumen biohydrogenation (BH) of polyunsaturated fatty acids (PUFA), but to date results obtained have been inconsistent. This study therefore aims to conduct a meta-analysis of the scientific literature related to the effects of tannins on rumen BH and fermentation. Methods A total of 28 articles were collected from various scientific databases, such as Scopus, Science Direct and Google Scholar, and the data were analysed using a random effects model and meta-regression for rumen BH. The publication bias on the main variables of rumen fermentation was assessed using a funnel plot and Egger's test. Results An increase in tannin levels significantly reduced methane production (p < 0.001) and the population of Butyrivibrio fibrisolvens (p < 0.05). Dietary tannins also decreased the SFA proportion (p < 0.001) and increased (p < 0.001) the rumen monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) proportions. In additions, there were negative relationships between dietary tannin levels and BH rates of C18:2 n-6 and C18:3 n-3 (p < 0.05). Conclusion Dietary tannins modulate the rumen fermentation profile, mitigate methane emissions, and inhibit rumen BH of PUFA.
Collapse
|
2
|
Menci R, Coppa M, Torrent A, Natalello A, Valenti B, Luciano G, Priolo A, Niderkorn V. Effects of two tannin extracts at different doses in interaction with a green or dry forage substrate on in vitro rumen fermentation and biohydrogenation. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114977] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Ability of tannins to modulate ruminal lipid metabolism and milk and meat fatty acid profiles. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114623] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
The Potential Effect of Dietary Tannins on Enteric Methane Emission and Ruminant Production, as an Alternative to Antibiotic Feed Additives – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Antibiotic growth promoters in livestock nutrition cause microbial resistance which produces threats to human health. Therefore, tannins have been considered as natural alternative antibiotic feed additives which possess various biological properties including antimicrobial, anti-inflammatory, antioxidant and immunomodulatory. Additionally, these plants also have antiparasitic and anti-bloat characteristics which contribute to inhibit the enteric methane emission in order to improve nutrient digestibility, milk and meat quality, fatty acids composition and ruminant production. Antibiotic growth promoters have been practiced in animals feeding to increase feed intake, growth rate, weight gain as well as reduce metabolic disorders and energy losses in the rumen. In 2006, the European Union banned the usage of antibiotic growth promoters in the feeding of livestock. This antibiotic resistance issue has increased demand to explore the natural feed additives that might be useful for animal production system. Consequently, natural forages have been categorized as potential feed additives in animal production since it improves nutritive value, protein digestibility, increase amino acid absorption and growth rate. But, some plant materials are usually rich in tannins known as anti-nutritional factors. Therefore, the application of tannin-rich plants in ruminant nutrition needs great precaution due to its possible injurious effects (dose dependent) on animal health such as metabolic disorders. Hence, there is need to give attention to the usage of tannins in ruminant nutrition as an alternative to antibiotics feed additives to investigate its effects on enteric methane emissions and ruminants production. In addition, safety and risk associated with tannins feeding have also been briefly discussed.
Collapse
|
5
|
The links between supplementary tannin levels and conjugated linoleic acid (CLA) formation in ruminants: A systematic review and meta-analysis. PLoS One 2020; 15:e0216187. [PMID: 32168348 PMCID: PMC7069617 DOI: 10.1371/journal.pone.0216187] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
A systematic review and meta-analysis were conducted to predict and identify ways to increase conjugated linoleic acid (CLA) formation in ruminant-derived products to treat human health issues with dietary tannins. The objective was to compare and confirm the effects of dietary tannins on CLA formation by analyzing in vitro and/or in vivo studies. We reported the results of the meta-analysis based on numerical data from 38 selected publications consisting of 3712 treatments. Generally, via multiple pathways, the CLA formation increased when dietary tannins increased. Concurrently, dietary tannins increased Δ9 desaturation and the CLA indices in milk and meat (P < 0.05 and P < 0.001, with average R2 values of 0.23 and 0.44, respectively), but they did not change the rumen fermentation characteristics, including total volatile fatty acids (mmol/L) and their acid components. In vitro observations may accurately predict in vivo results. Unfortunately, there was no relationship between in vitro observations and in vivo results (R2 < 0.10), indicating that it is difficult to predict CLA formation in vivo considering in vitro observations. According to the statistical meta-analysis results regarding animal aspects, the ranges of tannin levels required for CLA formation in vitro and in vivo were approximately 0.1–20 g/kg dry matter (DM) (P < 0.001) and 2.1–80 g/kg DM (P < 0.001), respectively. In conclusion, the in vivo method was more suitable for the direct observation of fatty acid transformation than the in vitro method.
Collapse
|
6
|
Jafari H, Fatahnia F, Khatibjoo A, Taasoli G, Fazaeli H, Varmaghany S. Effect of oak (Quercus persica) acorn level on apparent digestibility, ruminal fermentation, nitrogen balance and urinary purine derivatives in pregnant goats. J Anim Physiol Anim Nutr (Berl) 2018; 102:882-891. [PMID: 29740883 DOI: 10.1111/jpn.12913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/05/2018] [Indexed: 11/29/2022]
Abstract
The aim of this experiment was to investigate the effect of dietary oak (Quercus persica) acorn (OA) level on dry matter intake (DMI), apparent nutrient digestibility, nitrogen (N) utilization, ruminal fermentation, protozoa population and urinary purine derivatives (PD) during the last 60 days of goat pregnancy. Twenty-four multiparous pregnant goats (41.7 ± 2.3 kg BW) were assigned to one of three experimental diets consisted of control diet (C, without OA) and diets containing 20 (OA20 ) or 40 g/100 g of OA (OA40 ) on a DM basis in a completely randomized block design. Goats fed OA40 had lower DMI (p < .01), DM (p < .01), OM (p < .01) and NDF (p < .05) digestibility, ruminal NH3 -N concentration (p < .01), N intake (p < .01) and N retention (p < .01). Crude protein digestibility and ruminal acetate and total volatile fatty acid (VFA) concentration were lower in animals fed OA-contained diets (p < .01), whereas ruminal propionate concentration was higher in goats fed the C diet (p < .01). Animals fed OA40 had higher faecal N excretion and lower urinary N excretion (p < .01). Urinary PD was lower in goats fed diets containing OA in relation to those fed the C diet (p < .01). Total protozoa population decreased linearly with increasing OA level in the diet (p < .05). These results suggest that feeding OA, especially high level, has negative impacts on DMI, nutrient digestibility, VFA concentration, N retention and urinary PD excretion that may have adverse effects on metabolism and performance of pregnant goats.
Collapse
Affiliation(s)
- H Jafari
- Animal Science Research Department, Ilam Agricultural and Natural Resources Research and Education Center, AREEO, Ilam, Iran.,Department of Animal Science, Ilam University, Ilam, Iran
| | - F Fatahnia
- Department of Animal Science, Ilam University, Ilam, Iran
| | - A Khatibjoo
- Department of Animal Science, Ilam University, Ilam, Iran
| | - G Taasoli
- Department of Animal Science, Ilam University, Ilam, Iran
| | - H Fazaeli
- Animal Science Research Institute of Iran, AREEO, Karaj, Iran
| | - S Varmaghany
- Animal Science Research Department, Ilam Agricultural and Natural Resources Research and Education Center, AREEO, Ilam, Iran
| |
Collapse
|
7
|
Effects of tannins on the fatty acid profiles of rumen fluids and milk from lactating goats fed a total mixed ration containing rapeseed oil. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Henke A, Westreicher-Kristen E, Molkentin J, Dickhoefer U, Knappstein K, Hasler M, Susenbeth A. Effect of dietary quebracho tannin extract on milk fatty acid composition in cows. J Dairy Sci 2017; 100:6229-6238. [PMID: 28551180 DOI: 10.3168/jds.2016-12149] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/06/2017] [Indexed: 01/27/2023]
Abstract
The aim of this study was to examine the capacity of quebracho tannin extract (QTE) to modulate the fatty acid (FA) profile in the milk fat of cows. Fifty Holstein cows yielding 33.2 ± 8.2 kg/d of milk were divided into 2 groups. The cows were fed a basal diet with a forage-concentrate ratio of 66:34 on a dry matter (DM) basis. Diets tested were control (CON, basal diet without QTE) and basal diet plus 15 or 30 g of QTE/kg of DM (QTE15 and QTE30, respectively). Two treatments could be tested simultaneously and were arranged along 6 periods. The milk FA profile was characterized by increments in the proportion of linoleic (LA) and α-linolenic acid (α-LNA) (QTE15 = 10 and 6.1%; QTE30 = 28 and 25%, respectively) compared to CON, which might indicate reduced ruminal biohydrogenation (BH) of both dietary LA and α-LNA. Vaccenic acid (VA) in the milk fat was reduced (QTE15 8.9% and QTE30 12%) compared to CON, which may be linked to inhibited BH of LA and α-LNA. Rumenic acid (RA), a conjugated LA (cis-9,trans-11 conjugated linoleic acid) and an important human health promoter, was unfortunately decreased (QTE15 8.3% and QTE30 16%) in the milk compared with CON, probably because of inhibited ruminal BH of LA. However, reduced RA in the milk was probably due to reduced availability of VA produced in the rumen and the consequently low VA available to be desaturated to RA in the mammary gland by Δ9-desaturase. The proportions of total polyunsaturated FA were increased with QTE15 and QTE30 by 4.7 and 15% compared to CON, respectively, and the long-chain FA proportions were also increased (QTE15 2.0% and QTE30 8.2%). Moreover, myristic and palmitic acid were reduced by QTE30 (9.6 and 3.3%, respectively) compared to CON, which also contributed to increasing the nutritional quality of milk because they are recognized to increase high-density lipoprotein in humans. Branched-chain FA in milk was reduced with QTE treatments, which indicates inhibited ruminal BH and microbial activity. In general, our findings suggest that dietary QTE have the potential to modulate FA profile of milk fat, and this effect is dosage dependent. Because QTE influenced the FA profile of milk fat both positively and negatively, further research is needed before concluding that QTE may improve the nutritional quality of cow milk fat in human diets.
Collapse
Affiliation(s)
- Anika Henke
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Edwin Westreicher-Kristen
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany.
| | - Joachim Molkentin
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institute, 24103 Kiel, Germany
| | - Uta Dickhoefer
- Institute of Agricultural Sciences in the Tropics, Universität Hohenheim, 70599 Stuttgart, Germany
| | - Karin Knappstein
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institute, 24103 Kiel, Germany
| | - Mario Hasler
- Lehrfach Variationsstatistik, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Andreas Susenbeth
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| |
Collapse
|
9
|
Correddu F, Gaspa G, Pulina G, Nudda A. Grape seed and linseed, alone and in combination, enhance unsaturated fatty acids in the milk of Sarda dairy sheep. J Dairy Sci 2016; 99:1725-1735. [PMID: 26774716 DOI: 10.3168/jds.2015-10108] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/19/2015] [Indexed: 11/19/2022]
Abstract
This study evaluated the effect of dietary inclusion of grape seed and linseed, alone or in combination, on sheep milk fatty acids (FA) profile using 24 Sarda dairy ewes allocated to 4 isoproductive groups. Groups were randomly assigned to 4 dietary treatments consisting of a control diet (CON), a diet including 300 g/d per animal of grape seed (GS), a diet including 220 g/d per animal of extruded linseed (LIN), and a diet including a mix of 300 g/d per animal of grape seed and 220 g/d per animal of extruded linseed (MIX). The study lasted 10 wk, with a 2-wk adaptation period and an 8-wk experimental period. Milk FA composition was analyzed in milk samples collected in the last 4 wk of the trial. The milk concentration of saturated fatty acids (SFA) decreased and that of unsaturated, monounsaturated, and polyunsaturated fatty acids (UFA, MUFA, and PUFA, respectively) increased in GS, LIN, and MIX groups compared with CON. The MIX group showed the lowest values of SFA and the highest of UFA, MUFA, and PUFA. Milk from ewes fed linseed (LIN and MIX) showed an enrichment of vaccenic acid (VA), oleic acid (OA), α-linolenic acid (LNA), and cis-9,trans-11 conjugated linoleic acid (CLA) compared with milk from the CON group. The GS group showed a greater content of milk oleic acid (OA) and linoleic acid (LA) and tended to show a greater content of VA and cis-9,trans-11 CLA than the CON group. The inclusion of grape seed and linseed, alone and in combination, decreased the milk concentration of de novo synthesized FA C10:0, C12:0, and C14:0, with the MIX group showing the lowest values. In conclusion, grape seed and linseed could be useful to increase the concentration of FA with potential health benefits, especially when these ingredients are included in combination in the diet.
Collapse
Affiliation(s)
- F Correddu
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - G Gaspa
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - G Pulina
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - A Nudda
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100 Sassari, Italy.
| |
Collapse
|