1
|
Alqahtani S, Butcher MC, Ramage G, Dalby MJ, McLean W, Nile CJ. Acetylcholine Receptors in Mesenchymal Stem Cells. Stem Cells Dev 2023; 32:47-59. [PMID: 36355611 DOI: 10.1089/scd.2022.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are well known for their regenerative potential. Even though the ability of MSCs to proliferate and differentiate has been studied extensively, there remains much to learn about the signaling mechanisms and pathways that control proliferation and influence the differentiation phenotype. In recent years, there has been growing evidence for the utility of non-neuronal cholinergic signaling systems and that acetylcholine (ACh) plays an important ubiquitous role in cell-to-cell communication. Indeed, cholinergic signaling is hypothesized to occur in stem cells and ACh synthesis, as well as in ACh receptor (AChR) expression, has been identified in several stem cell populations, including MSCs. Furthermore, AChRs have been found to influence MSC regenerative potential. In humans, there are two major classes of AChRs, muscarinic AChRs and nicotinic AChRs, with each class possessing several subtypes or subunits. In this review, the expression and function of AChRs in different types of MSC are summarized with the aim of highlighting how AChRs play a pivotal role in regulating MSC regenerative function.
Collapse
Affiliation(s)
- Saeed Alqahtani
- School of Medicine Dentistry and Nursing and University of Glasgow, Glasgow, United Kingdom
| | - Mark C Butcher
- School of Medicine Dentistry and Nursing and University of Glasgow, Glasgow, United Kingdom
| | - Gordon Ramage
- School of Medicine Dentistry and Nursing and University of Glasgow, Glasgow, United Kingdom
| | - Matthew J Dalby
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - William McLean
- School of Medicine Dentistry and Nursing and University of Glasgow, Glasgow, United Kingdom
| | - Christopher J Nile
- Faculty of Medical Sciences, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K. Crosstalk between cancer and the neuro-immune system. J Neuroimmunol 2018; 315:15-23. [DOI: 10.1016/j.jneuroim.2017.12.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
|
4
|
Fong G, Backman LJ, Hart DA, Danielson P, McCormack B, Scott A. Substance P enhances collagen remodeling and MMP-3 expression by human tenocytes. J Orthop Res 2013; 31:91-8. [PMID: 22836729 PMCID: PMC3959169 DOI: 10.1002/jor.22191] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/25/2012] [Indexed: 02/06/2023]
Abstract
The loss of collagen organization is considered a hallmark histopathologic feature of tendinosis. At the cellular level, tenocytes have been shown to produce signal substances that were once thought to be restricted to neurons. One of the main neuropeptides implicated in tendinosis, substance P (SP), is known to influence collagen organization, particularly after injury. The aim of this study was to examine the influence of SP on collagen remodeling by primary human tendon cells cultured in vitro in three-dimensional collagen lattices. We found that SP stimulation led to an increased rate of collagen remodeling mediated via the neurokinin-1 receptor (NK-1 R), the preferred cell receptor for SP. Gene expression analysis showed that SP stimulation resulted in significant increases in MMP3, COL3A1 and ACTA2 mRNA levels in the collagen lattices. Furthermore, cyclic tensile loading of tendon cell cultures along with the administration of exogenous SP had an additive effect on MMP3 expression. Immunoblotting confirmed that SP increased MMP3 protein levels via the NK-1 R. This study indicates that SP, mediated via NK-1 R, increases collagen remodeling and leads to increased MMP3 mRNA and protein expression that is further enhanced by cyclic mechanical loading.
Collapse
Affiliation(s)
- Gloria Fong
- Dept. of Physical Therapy, University of British Columbia, Vancouver, BC, Canada,Dept. of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden,Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, BC, Canada
| | - Ludvig J. Backman
- Dept. of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - David A. Hart
- Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, BC, Canada,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Patrik Danielson
- Dept. of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Bob McCormack
- Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, BC, Canada
| | - Alex Scott
- Dept. of Physical Therapy, University of British Columbia, Vancouver, BC, Canada,Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, BC, Canada,Correspondence to: Alex Scott, PhD, Dept. of Physical Therapy, University of British Columbia, Vancouver, BC, Canada, , phone: +1 604 875 4111 Ext. 21810, fax: +1 604 675 2576
| |
Collapse
|
5
|
Human tenocytes are stimulated to proliferate by acetylcholine through an EGFR signalling pathway. Cell Tissue Res 2012; 351:465-75. [PMID: 23212463 PMCID: PMC3582816 DOI: 10.1007/s00441-012-1530-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/07/2012] [Indexed: 11/06/2022]
Abstract
Studies of human patellar and Achilles tendons have shown that primary tendon fibroblasts (tenocytes) not only have the capacity to produce acetylcholine (ACh) but also express muscarinic ACh receptors (mAChRs) through which ACh can exert its effects. In patients with tendinopathy (chronic tendon pain) with tendinosis, the tendon tissue is characterised by hypercellularity and angiogenesis, both of which might be influenced by ACh. In this study, we have tested the hypothesis that ACh increases the proliferation rate of tenocytes through mAChR stimulation and have examined whether this mechanism operates via the extracellular activation of the epidermal growth factor receptor (EGFR), as shown in other fibroblastic cells. By use of primary human tendon cell cultures, we identified cells expressing vimentin, tenomodulin and scleraxis and found that these cells also contained enzymes related to ACh synthesis and release (choline acetyltransferase and vesicular acetylcholine transporter). The cells furthermore expressed mAChRs of several subtypes. Exogenously administered ACh stimulated proliferation and increased the viability of tenocytes in vitro. When the cells were exposed to atropine (an mAChR antagonist) or the EGFR inhibitor AG1478, the proliferative effect of ACh decreased. Western blot revealed increased phosphorylation, after ACh stimulation, for both EGFR and the extracellular-signal-regulated kinases 1 and 2. Given that tenocytes have been shown to produce ACh and express mAChRs, this study provides evidence of a possible autocrine loop that might contribute to the hypercellularity seen in tendinosis tendon tissue.
Collapse
|