1
|
Sheftel CM, Sartori LC, Hunt ER, Manuel RSJ, Bell AM, Domingues RR, Wake LA, Scharpf BR, Vezina CM, Charles JF, Hernandez LL. Peripartal treatment with low-dose sertraline accelerates mammary gland involution and has minimal effects on maternal and offspring bone. Physiol Rep 2022; 10:e15204. [PMID: 35234346 PMCID: PMC8889862 DOI: 10.14814/phy2.15204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Women mobilize up to 10% of their bone mass during lactation to provide milk calcium. About 8%–13% of mothers use selective serotonin reuptake inhibitors (SSRI) to treat peripartum depression, but SSRIs independently decrease bone mass. Previously, peripartal use of the SSRI fluoxetine reduced maternal bone mass sustained post‐weaning and reduced offspring bone length. To determine whether these effects were fluoxetine‐specific or consistent across SSRI compounds, we examined maternal and offspring bone health using the most prescribed SSRI, sertraline. C57BL/6 mice were given 10 mg/kg/day sertraline, from the beginning of pregnancy through the end of lactation. Simultaneously, we treated nulliparous females on the same days as the primiparous groups, resulting in age‐matched nulliparous groups. Dams were euthanized at lactation day 10 (peak lactation, n = 7 vehicle; n = 9 sertraline), lactation day 21 (weaning, n = 9 vehicle; n = 9 sertraline), or 3m post‐weaning (n = 10 vehicle; n = 10 sertraline) for analysis. Offspring were euthanized at peak lactation or weaning for analysis. We determined that peripartum sertraline treatment decreased maternal circulating calcium concentrations across the treatment period, which was also seen in nulliparous treated females. Sertraline reduced the bone formation marker, procollagen 1 intact N‐terminal propeptide, and tended to reduce maternal BV/TV at 3m post‐weaning but did not impact maternal or offspring bone health otherwise. Similarly, sertraline did not reduce nulliparous female bone mass. However, sertraline reduced immunofluorescence staining of the tight junction protein, zona occludens in the mammary gland, and altered alveoli morphology, suggesting sertraline may accelerate mammary gland involution. These findings indicate that peripartum sertraline treatment may be a safer SSRI for maternal and offspring bone rather than fluoxetine.
Collapse
Affiliation(s)
- Celeste M Sheftel
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Luma C Sartori
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emily R Hunt
- Department of Orthopedic Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Robbie S J Manuel
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Autumn M Bell
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rafael R Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lella A Wake
- Department of Orthopedic Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon R Scharpf
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Laura L Hernandez
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Yan G, Huang Y, Cao H, Wu J, Jiang N, Cao X. Association of breastfeeding and postmenopausal osteoporosis in Chinese women: a community-based retrospective study. BMC WOMENS HEALTH 2019; 19:110. [PMID: 31409345 PMCID: PMC6692954 DOI: 10.1186/s12905-019-0808-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022]
Abstract
Background Postmenopausal osteoporosis (PMOP) has long been a pervasive public health concern. With the aging Chinese population, the prevention, assessment and management of postmenopausal osteoporosis were particularly important. During the breastfeeding, a large amount of Calcium loss from maternal bone for infants’ growth. However, whether this loss is completely reversible remains controversial. As the relationship between breastfeeding and postmenopausal osteoporosis is different from society to society and is not clear from the literature, the purpose of this study was to determine whether breastfeeding was an independent factor for the development of PMOP based on Chinese postmenopausal population. Methods A retrospective cross-sectional investigation was conducted at Tianjin Xiaobailou health Community Healthcare Center between December 2017 and June 2018. Postmenopausal women over the age of 50 who underwent the annual health examination or visited the center to perform bone densitometry as a part of routine screening for disease were recruited. A trained community nurse administered a questionnaire to all participants by face-to-face interview. Participants were questioned about age, BMI, Vitamin D and calcium intake, the history of smoking, drinking and fracture, age of menarche, age of menopause, the number of pregnancy, parity, feeding pattern (breastfeeding, artificial feeding and mixed feeding) and overall breastfeeding duration. BMD measurements were carried out using quantitative ultrasound (QUS) at the bilateral radius. Results A total of 202 women who met the inclusive and exclusive criteria were enrolled. Univariate analysis revealed that overall breastfeeding more than 24 months increased the risk of osteoporosis (OR 39.00, 95%CI 2.40–634.65, p = 0.010). However, multivariate estimate of the risk of osteoporosis by overall breastfeeding duration suggested that when controlling for age, BMI, the number of pregnancy and parity, the overall breastfeeding duration was not an independent risk factor for postmenopausal osteoporosis (OR 5.22, 95%CI 0.18–147.76, p = 0.333). Additionally, age (OR 1.16, 95%CI 1.05–1.29, p = 0.003), BMI (OR 1.26, 95%CI 1.04–1.54, p = 0.021) and the number of pregnancy (OR 1.80, 95%CI 1.08–2.98, p = 0.024) were significant associated with postmenopausal osteoporosis. Conclusion Breastfeeding was not associated with postmenopausal osteoporosis, while age, BMI and the number of pregnancy may contribute to increasing risk of postmenopausal osteoporosis in Chinese women. Electronic supplementary material The online version of this article (10.1186/s12905-019-0808-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guiming Yan
- School of Nursing, Tianjin Medical University, Tianjin, 300070, China.
| | - Yaqi Huang
- School of Nursing, Tianjin Medical University, Tianjin, 300070, China
| | - Hong Cao
- Department of bone medicine of Tianjin Hospital, Tianjin, China
| | - Jie Wu
- Xiao Bai Lou Community Healthcare Service Center, Heping district, Tianjin, China
| | - Nan Jiang
- School of Nursing, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaona Cao
- School of Nursing, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
3
|
Teerapornpuntakit J, Chanprapaph P, Charoenphandhu N. Previous Adolescent Pregnancy and Breastfeeding Does Not Negatively Affect Bone Mineral Density at the Age of Peak Bone Mass. Breastfeed Med 2018; 13:500-505. [PMID: 30156423 DOI: 10.1089/bfm.2018.0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To determine bone mineral density (BMD) at the age of peak bone mass in women who previously experienced pregnancy and breastfeeding during adolescence. MATERIALS AND METHODS In this retrospective study, female volunteers aged 24-30 years who were pregnant during the age of 15-19 years and have had one to two babies were recruited. All of them experienced breastfeeding without history of bone- or calcium-related problems, such as fracture or low calcium intake. BMD was determined at the femur and L1-L4 spine by dual-energy X-ray absorptiometry. RESULTS We found that both volunteers who previously experienced breastfeeding and age-matched control volunteers had similar BMD at the L1-L4 spines and femora. Further analysis for site-specific changes of lumbar and femoral BMDs showed that the values of the breastfeeding group were not different from those of the control group except at L1 and L2, where BMD values were greater in breastfeeding group compared with the control group. At both femoral and vertebral sites, T- and Z-scores were apparently similar between the two groups. In addition, the BMD at peak bone mass had no significant correlation with breastfeeding duration. CONCLUSIONS Teenage pregnancy and breastfeeding did not negatively affect BMD later at the age of peak bone mass. Therefore, breastfeeding can be encouraged in teenage mothers.
Collapse
Affiliation(s)
- Jarinthorn Teerapornpuntakit
- 1 Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University , Bangkok, Thailand .,2 Department of Physiology, Faculty of Medical Science, Naresuan University , Phitsanulok, Thailand
| | - Pharuhas Chanprapaph
- 3 Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- 1 Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University , Bangkok, Thailand .,4 Department of Physiology, Faculty of Science, Mahidol University , Bangkok, Thailand .,5 Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom, Thailand .,6 The Academy of Science , The Royal Society of Thailand, Dusit, Bangkok, Thailand
| |
Collapse
|
4
|
Weaver SR, Hernandez LL. Could use of Selective Serotonin Reuptake Inhibitors During Lactation Cause Persistent Effects on Maternal Bone? J Mammary Gland Biol Neoplasia 2018; 23:5-25. [PMID: 29603039 DOI: 10.1007/s10911-018-9390-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
The lactating mammary gland elegantly coordinates maternal homeostasis to provide calcium for milk. During lactation, the monoamine serotonin regulates the synthesis and release of various mammary gland-derived factors, such as parathyroid hormone-related protein (PTHrP), to stimulate bone resorption. Recent evidence suggests that bone mineral lost during prolonged lactation is not fully recovered following weaning, possibly putting women at increased risk of fracture or osteoporosis. Selective Serotonin Reuptake Inhibitor (SSRI) antidepressants have also been associated with reduced bone mineral density and increased fracture risk. Therefore, SSRI exposure while breastfeeding may exacerbate lactational bone loss, compromising long-term bone health. Through an examination of serotonin and calcium homeostasis during lactation, lactational bone turnover and post-weaning recovery of bone mineral, and the effect of peripartum depression and SSRI on the mammary gland and bone, this review will discuss the hypothesis that peripartum SSRI exposure causes persistent reductions in bone mineral density through mammary-derived PTHrP signaling with bone.
Collapse
Affiliation(s)
- Samantha R Weaver
- Endocrine and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Gu A, Sellamuthu R, Himes E, Childress PJ, Pelus LM, Orschell CM, Kacena MA. Alterations to maternal cortical and trabecular bone in multiparous middle-aged mice. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2017; 17:312-318. [PMID: 29199192 PMCID: PMC5749039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES During the reproductive cycle, altered calcium homeostasis is observed due to variable demand for mineral requirements. This results in increased bone resorption during the time period leading up to parturition and subsequent lactation. During lactation, women will lose 1-3% of bone mineral density per month, which is comparable to the loss experienced on an annual basis post-menopausal. The purpose of this study was to determine the effect of parity on bone formation in middle-aged mice. METHODS Mice were mated and grouped by number of parity and compared with age matched nulliparous controls. Measurements were taken of femoral trabecular and cortical bone. Calcium, protein and alkaline phosphatase levels were also measured. RESULTS An increase in trabecular bone mineral density was observed when comparing mice that had undergone parity once to the nulliparous control. An overall decrease in trabecular bone mineral density was observed as parity increased from 1 to 5 pregnancies. No alteration was seen in cortical bone formation. No difference was observed when calcium, protein and alkaline phosphatase levels were assessed. CONCLUSIONS This study demonstrates that number of parity has an impact on trabecular bone formation in middle-aged mice, with substantial changes in bone density seen among the parous groups.
Collapse
Affiliation(s)
- Alex Gu
- George Washington School of Medicine and Health Sciences, 2300 Eye Street NW, Washington DC 20037,Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis IN 46202,Corresponding author: Alex Gu, George Washington School of Medicine and Health Sciences, 2300 Eye Street NW, Washington DC 20037, United States E-mail:
| | - Rajendran Sellamuthu
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN, 46202
| | - Evan Himes
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis IN 46202
| | - Paul J. Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis IN 46202
| | - Louis M. Pelus
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN 46202
| | - Christie M. Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN, 46202
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis IN 46202
| |
Collapse
|
6
|
Incorporation of Flaxseed Flour as a Dietary Source for ALA Increases Bone Density and Strength in Post-Partum Female Rats. Lipids 2017; 52:327-333. [DOI: 10.1007/s11745-017-4245-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 03/15/2017] [Indexed: 12/12/2022]
|