1
|
Li N, Shi J, Chen Z, Dong Z, Ma S, Li Y, Huang X, Li X. In silico prediction of drug-induced nephrotoxicity: current progress and pitfalls. Expert Opin Drug Metab Toxicol 2024:1-13. [PMID: 39360665 DOI: 10.1080/17425255.2024.2412629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
INTRODUCTION Due to its role in absorption and metabolism, the kidney is an important target for drug toxicity. Drug-induced nephrotoxicity (DIN) presents a significant challenge in clinical practice and drug development. Conventional methods for assessing nephrotoxicity have limitations, highlighting the need for innovative approaches. In recent years, in silico methods have emerged as promising tools for predicting DIN. AREAS COVERED A literature search was performed using PubMed and Web of Science, from 2013 to February 2023 for this review. This review provides an overview of the current progress and pitfalls in the in silico prediction of DIN, which discusses the principles and methodologies of computational models. EXPERT OPINION Despite significant advancements, this review identified issues accentuates the pivotal imperatives of data fidelity, model optimization, interdisciplinary collaboration, and mechanistic comprehension in sculpting the vista of DIN prediction. Integration of multiple data sources and collaboration between disciplines are essential for improving predictive models. Ultimately, a holistic approach combining computational, experimental, and clinical methods will enhance our understanding and management of DIN.
Collapse
Affiliation(s)
- Na Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Juan Shi
- Department of Clinical Pharmacy, The First People's Hospital of Jinan, Jinan, China
| | - Zhaoyang Chen
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Zhonghua Dong
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Shiyu Ma
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| |
Collapse
|
2
|
Drozdzik M, Drozdzik M, Oswald S. Membrane Carriers and Transporters in Kidney Physiology and Disease. Biomedicines 2021; 9:biomedicines9040426. [PMID: 33919957 PMCID: PMC8070919 DOI: 10.3390/biomedicines9040426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
The growing information suggests that chronic kidney disease may affect expression and function of membrane carriers and transporters in the kidney. The dysfunction of carriers and transporters entails deficient elimination of uremic solutes as well as xenobiotics (drugs and toxins) with subsequent clinical consequences. The renal carriers and transporters are also targets of drugs used in clinical practice, and intentional drug-drug interactions in the kidney are produced to increase therapeutic efficacy. The understanding of membrane carriers and transporters function in chronic kidney disease is important not only to better characterize drug pharmacokinetics, drug actions in the kidney, or drug-drug interactions but also to define the organ pathophysiology.
Collapse
Affiliation(s)
- Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence:
| | - Maria Drozdzik
- Faculty of Medicine, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18051 Rostock, Germany;
| |
Collapse
|
3
|
Shen QQ, Wang JJ, Roy D, Sun LX, Jiang ZZ, Zhang LY, Huang X. Organic anion transporter 1 and 3 contribute to traditional Chinese medicine-induced nephrotoxicity. Chin J Nat Med 2020; 18:196-205. [PMID: 32245589 DOI: 10.1016/s1875-5364(20)30021-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 01/09/2023]
Abstract
With the internationally growing popularity of traditional Chinese medicine (TCM), TCM-induced nephropathy has attracted public attention. Minimizing this toxicity is an important issue for future research. Typical nephrotoxic TCM drugs such as Aristolochic acid, Tripterygium wilfordii Hook. f, Rheum officinale Baill, and cinnabar mainly damage renal proximal tubules or cause interstitial nephritis. Transporters in renal proximal tubule are believed to be critical in the disposition of xenobiotics. In this review, we provide information on the alteration of renal transporters by nephrotoxic TCMs, which may be helpful for understanding the nephrotoxic mechanism of TCMs and reducing adverse effects. Studies have proven that when administering nephrotoxic TCMs, the expression or function of renal transporters is altered, especially organic anion transporter 1 and 3. The alteration of these transporters may enhance the accumulation of toxic drugs or the dysfunction of endogenous toxins and subsequently sensitize the kidney to injury. Transporters-related drug combination and clinical biomarkers supervision to avoid the risk of future toxicity are proposed.
Collapse
Affiliation(s)
- Qing-Qing Shen
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Jing Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Debmalya Roy
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Xin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Jagonia RVS, Dela Victoria RG, Bajo LM, Tan RS. Conus striatus venom exhibits non-hepatotoxic and non-nephrotoxic potent analgesic activity in mice. Mol Biol Rep 2019; 46:5479-5486. [PMID: 31102148 DOI: 10.1007/s11033-019-04875-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
Abstract
Constant research into the pharmaceutical properties of marine natural products has led to the discovery of many potentially active agents considered worthy of medical applications. Genus Conus, which approximately comprises 700 species, is currently under every researcher's interest because of the conopeptides in their crude venom. Conopeptides have a wide range of pharmacological classes and properties. This research focused on the crude venom of Conus striatus to assess its analgesic activity, mutagenicity, nephrotoxicity, and hepatotoxicity in mice. The crude venom was extracted from the conus snails and the protein concentration was determined using Bradford's method. The analgesic activity of the venom was determined using the hot-plate method and standard IFCC method was used to determine the alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Evaluation of mutagenicity was done using micronucleus assay and the nephrotoxicity of the venom was determined using Kidney Coefficient and serum creatinine concentration. The maximum tolerable dose (MTD) of the crude venom was found to be 75 ppm. The venom exhibited potent analgesic activity even higher than the positive control (Ibuprofen). Most of the analgesic drugs can usually impact damage in the liver and kidneys. However, AST and ALT results revealed that the venom has no adverse effects on the liver. Although the venom increased the incidence of micronucleated polychromatic erythrocytes, making it mutagenic, with MTD concentration's mutagenicity comparable to the positive control methyl methanesulfonate (MMS). The kidney coefficients, on the other hand, showed no significant difference between the treated groups and that of the untreated group. The serum creatinine also showed a concentration-dependent increase; with MTD treated mice got the highest creatinine concentration. However, MTD/2 and MTD/4 showed no significant difference in creatinine levels with respect to the untreated groups. Hence, the nephrotoxicity of the venom was only evident when used at higher concentration. The venom exhibited potent analgesic activity indicated that the C. striatus crude venom extract could have a potential therapeutic component as analgesic drugs that displayed no hepatic damage. This study also suggests that for this venom to be utilized for future medical applications, their usage must be regulated and properly monitored to avoid nephrotoxic effect.
Collapse
Affiliation(s)
- Rofel Vincent S Jagonia
- Department of Chemistry, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, A. Bonifacio Avenue, 9200, Tibanga Iligan City, Philippines
| | - Rejemae G Dela Victoria
- Department of Chemistry, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, A. Bonifacio Avenue, 9200, Tibanga Iligan City, Philippines
| | - Lydia M Bajo
- Department of Chemistry, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, A. Bonifacio Avenue, 9200, Tibanga Iligan City, Philippines
| | - Roger S Tan
- Department of Chemistry, College of Science, De La Salle University, 2401 Taft Avenue, 0922, Manila, Philippines.
| |
Collapse
|
5
|
Wu W, Bush KT, Nigam SK. Key Role for the Organic Anion Transporters, OAT1 and OAT3, in the in vivo Handling of Uremic Toxins and Solutes. Sci Rep 2017; 7:4939. [PMID: 28694431 PMCID: PMC5504054 DOI: 10.1038/s41598-017-04949-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/30/2017] [Indexed: 01/25/2023] Open
Abstract
In vitro data indicates that the kidney proximal tubule (PT) transporters of uremic toxins and solutes (e.g., indoxyl sulfate, p-cresol sulfate, kynurenine, creatinine, urate) include two “drug” transporters of the organic anion transporter (OAT) family: OAT1 (SLC22A6, originally NKT) and OAT3 (SLC22A8). Here, we have examined new and prior metabolomics data from the Oat1KO and Oat3KO, as well as newly obtained metabolomics data from a “chemical double” knockout (Oat3KO plus probenecid). This gives a picture of the in vivo roles of OAT1 and OAT3 in the regulation of the uremic solutes and supports the centrality of these “drug” transporters in independently and synergistically regulating uremic metabolism. We demonstrate a key in vivo role for OAT1 and/or OAT3 in the handling of over 35 uremic toxins and solutes, including those derived from the gut microbiome (e.g., CMPF, phenylsulfate, indole-3-acetic acid). Although it is not clear whether trimethylamine-N-oxide (TMAO) is directly transported, the Oat3KO had elevated plasma levels of TMAO, which is associated with cardiovascular morbidity in chronic kidney disease (CKD). As described in the Remote Sensing and Signaling (RSS) Hypothesis, many of these molecules are involved in interorgan and interorganismal communication, suggesting that uremia is, at least in part, a disorder of RSS.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Kevin T Bush
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sanjay K Nigam
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Departments of Medicine, Pediatrics, and Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|