1
|
Weng W, Li H, Zhu S. An Overlooked Bone Metabolic Disorder: Cigarette Smoking-Induced Osteoporosis. Genes (Basel) 2022; 13:genes13050806. [PMID: 35627191 PMCID: PMC9141076 DOI: 10.3390/genes13050806] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoking (CS) leads to significant bone loss, which is recognized as an independent risk factor for osteoporosis. The number of smokers is continuously increasing due to the addictive nature of smoking. Therefore it is of great value to effectively prevent CS-induced osteoporosis. However, there are currently no effective interventions to specifically counteract CS-induced osteoporosis, owing to the fact that the specific mechanisms by which CS affects bone metabolism are still elusive. This review summarizes the latest research findings of important pathways between CS exposure and bone metabolism, with the aim of providing new targets and ideas for the prevention of CS-induced osteoporosis, as well as providing theoretical directions for further research in the future.
Collapse
Affiliation(s)
- Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
| | - Hongming Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Sheng Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China;
- Correspondence:
| |
Collapse
|
2
|
Tarantino U, Cariati I, Greggi C, Gasbarra E, Belluati A, Ciolli L, Maccauro G, Momoli A, Ripanti S, Falez F, Brandi ML. Skeletal System Biology and Smoke Damage: From Basic Science to Medical Clinic. Int J Mol Sci 2021; 22:ijms22126629. [PMID: 34205688 PMCID: PMC8234270 DOI: 10.3390/ijms22126629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
Cigarette smoking has a negative impact on the skeletal system, as it reduces bone mass and increases fracture risk through its direct or indirect effects on bone remodeling. Recent evidence demonstrates that smoking causes an imbalance in bone turnover, making bone vulnerable to osteoporosis and fragility fractures. Moreover, cigarette smoking is known to have deleterious effects on fracture healing, as a positive correlation between the daily number of cigarettes smoked and years of exposure has been shown, even though the underlying mechanisms are not fully understood. It is also well known that smoking causes several medical/surgical complications responsible for longer hospital stays and a consequent increase in the consumption of resources. Smoking cessation is, therefore, highly advisable to prevent the onset of bone metabolic disease. However, even with cessation, some of the consequences appear to continue for decades afterwards. Based on this evidence, the aim of our review was to evaluate the impact of smoking on the skeletal system, especially on bone fractures, and to identify the pathophysiological mechanisms responsible for the impairment of fracture healing. Since smoking is a major public health concern, understanding the association between cigarette smoking and the occurrence of bone disease is necessary in order to identify potential new targets for intervention.
Collapse
Affiliation(s)
- Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (U.T.); (I.C.); (C.G.); (E.G.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Ida Cariati
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (U.T.); (I.C.); (C.G.); (E.G.)
- Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Greggi
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (U.T.); (I.C.); (C.G.); (E.G.)
- Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Elena Gasbarra
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (U.T.); (I.C.); (C.G.); (E.G.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Alberto Belluati
- Orthopaedic and Traumatology Department, Hospital Santa Maria delle Croci–AUSL Romagna, Viale Randi 5, 48121 Ravenna, Italy;
| | - Luigi Ciolli
- Orthopaedic and Traumatology Department, S. Spirito Hospital, Lungotevere in Sassia 1, 00193 Rome, Italy; (L.C.); (F.F.)
| | - Giulio Maccauro
- Department of Orthopaedics and Traumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy;
| | - Alberto Momoli
- Orthopedic and Traumatology Department, San Bortolo Hospital-AULSS 8 Berica, Viale Rodolfi 37, 36100 Vicenza, Italy;
| | - Simone Ripanti
- Department of Orthopaedics and Traumatology, San Giovanni-Addolorata Hospital, Via dell’Amba Aradam 8, 00184 Rome, Italy;
| | - Francesco Falez
- Orthopaedic and Traumatology Department, S. Spirito Hospital, Lungotevere in Sassia 1, 00193 Rome, Italy; (L.C.); (F.F.)
| | - Maria Luisa Brandi
- FIRMO Foundation, 50141 Florence, Italy
- Correspondence: ; Tel.: +39-55-5097-755
| |
Collapse
|