1
|
Nyárády BB, Kiss LZ, Bagyura Z, Merkely B, Dósa E, Láng O, Kőhidai L, Pállinger É. Growth and differentiation factor-15: A link between inflammaging and cardiovascular disease. Biomed Pharmacother 2024; 174:116475. [PMID: 38522236 DOI: 10.1016/j.biopha.2024.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Age-related disorders are closely linked to the accumulation of senescent cells. The senescence-associated secretory phenotype (SASP) sustains and progresses chronic inflammation, which is involved in cellular and tissue dysfunction. SASP-related growth and differentiation factor-15 (GDF-15) is an immunoregulatory cytokine that is coupled to aging and thus may have a regulatory role in the development and maintenance of atherosclerosis, a major cause of cardiovascular disease (CVD). Although the effects of GDF-15 are tissue-specific and dependent on microenvironmental changes such as inflammation, available data suggest that GDF-15 has a significant role in CVD. Thus, GDF-15 is a promising biomarker and potential therapeutic target for atherosclerotic CVD.
Collapse
Affiliation(s)
- Balázs Bence Nyárády
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, Budapest H-1122, Hungary.
| | - Loretta Zsuzsa Kiss
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, Budapest H-1122, Hungary.
| | - Zsolt Bagyura
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, Budapest H-1122, Hungary.
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, Budapest H-1122, Hungary.
| | - Edit Dósa
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, Budapest H-1122, Hungary.
| | - Orsolya Láng
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest H-1089, Hungary.
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest H-1089, Hungary.
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest H-1089, Hungary.
| |
Collapse
|
2
|
Bradley D, Deng T, Shantaram D, Hsueh WA. Orchestration of the Adipose Tissue Immune Landscape by Adipocytes. Annu Rev Physiol 2024; 86:199-223. [PMID: 38345903 DOI: 10.1146/annurev-physiol-042222-024353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Obesity is epidemic and of great concern because of its comorbid and costly inflammatory-driven complications. Extensive investigations in mice have elucidated highly coordinated, well-balanced interactions between adipocytes and immune cells in adipose tissue that maintain normal systemic metabolism in the lean state, while in obesity, proinflammatory changes occur in nearly all adipose tissue immune cells. Many of these changes are instigated by adipocytes. However, less is known about obesity-induced adipose-tissue immune cell alterations in humans. Upon high-fat diet feeding, the adipocyte changes its well-known function as a metabolic cell to assume the role of an immune cell, orchestrating proinflammatory changes that escalate inflammation and progress during obesity. This transformation is particularly prominent in humans. In this review, we (a) highlight a leading and early role for adipocytes in promulgating inflammation, (b) discuss immune cell changes and the time course of these changes (comparing humans and mice when possible), and (c) note how reversing proinflammatory changes in most types of immune cells, including adipocytes, rescues adipose tissue from inflammation and obese mice from insulin resistance.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Pennsylvania State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA;
| | - Tuo Deng
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Dharti Shantaram
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
3
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
4
|
Bernal-Tirapo J, Bayo Jiménez MT, Yuste-García P, Cordova I, Peñas A, García-Borda FJ, Quintela C, Prieto I, Sánchez-Ramos C, Ferrero-Herrero E, Monsalve M. Evaluation of Mitochondrial Function in Blood Samples Shows Distinct Patterns in Subjects with Thyroid Carcinoma from Those with Hyperplasia. Int J Mol Sci 2023; 24:ijms24076453. [PMID: 37047426 PMCID: PMC10094811 DOI: 10.3390/ijms24076453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Metabolic adaptations are a hallmark of cancer and may be exploited to develop novel diagnostic and therapeutic tools. Only about 50% of the patients who undergo thyroidectomy due to suspicion of thyroid cancer actually have the disease, highlighting the diagnostic limitations of current tools. We explored the possibility of using non-invasive blood tests to accurately diagnose thyroid cancer. We analyzed blood and thyroid tissue samples from two independent cohorts of patients undergoing thyroidectomy at the Hospital Universitario 12 de Octubre (Madrid, Spain). As expected, histological comparisons of thyroid cancer and hyperplasia revealed higher proliferation and apoptotic rates and enhanced vascular alterations in the former. Notably, they also revealed increased levels of membrane-bound phosphorylated AKT, suggestive of enhanced glycolysis, and alterations in mitochondrial sub-cellular distribution. Both characteristics are common metabolic adaptations in primary tumors. These data together with reduced mtDNA copy number and elevated levels of the mitochondrial antioxidant PRX3 in cancer tissue samples suggest the presence of mitochondrial oxidative stress. In plasma, cancer patients showed higher levels of cfDNA and mtDNA. Of note, mtDNA plasma levels inversely correlated with those in the tissue, suggesting that higher death rates were linked to lower mtDNA copy number. In PBMCs, cancer patients showed higher levels of PGC-1α, a positive regulator of mitochondrial function, but this increase was not associated with a corresponding induction of its target genes, suggesting a reduced activity in cancer patients. We also observed a significant difference in the PRDX3/PFKFB3 correlation at the gene expression level, between carcinoma and hyperplasia patients, also indicative of increased systemic metabolic stress in cancer patients. The correlation of mtDNA levels in tissue and PBMCs further stressed the interconnection between systemic and tumor metabolism. Evaluation of the mitochondrial gene ND1 in plasma, PBMCs and tissue samples, suggested that it could be a good biomarker for systemic oxidative metabolism, with ND1/mtDNA ratio positively correlating in PBMCs and tissue samples. In contrast, ND4 evaluation would be informative of tumor development, with ND4/mtDNA ratio specifically altered in the tumor context. Taken together, our data suggest that metabolic dysregulation in thyroid cancer can be monitored accurately in blood samples and might be exploited for the accurate discrimination of cancer from hyperplasia.
Collapse
|
5
|
Deng M, Su D, Xiao N, Zhang Z, Wang Y, Zong F, Li S, Wang J, Zhou D, Zhao Y, Yang H. Gdf15 deletion exacerbates acute lung injuries induced by intratracheal inoculation of aerosolized ricin in mice. Toxicology 2022; 469:153135. [DOI: 10.1016/j.tox.2022.153135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
|
6
|
Kang SG, Lee SE, Choi MJ, Chang JY, Kim JT, Zhang BY, Kang YE, Lee JH, Yi HS, Shong M. Th2 Cytokines Increase the Expression of Fibroblast Growth Factor 21 in the Liver. Cells 2021; 10:cells10061298. [PMID: 34073755 PMCID: PMC8225035 DOI: 10.3390/cells10061298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
Interleukin-4 (IL-4) and IL-13 are the major T helper 2 (Th2) cytokines, and they are involved in the regulation of metabolism in the adipose tissue. The liver contains diverse innate and adaptive immune cells, but it remains to be determined whether Th2 cytokines modulate energy metabolism in the liver. Here, using gene expression data from the Gene Expression Omnibus (GEO) and the BXD mouse reference population, we determined that the Th2 cytokines IL-4 and IL-13 increase the secretion of fibroblast growth factor 21 (FGF21) in the liver. In vitro experiments confirmed that FGF21 was highly expressed in response to IL-4 and IL-13, and this response was abolished by the Janus kinase (JAK)-signal transducer and activator of transcription 6 (STAT6) blockade. Moreover, FGF21 expression in response to Th2 cytokines was augmented by selective peroxisome proliferator-activated receptor α (PPARα) inhibition. In vivo administration of IL-4 increased FGF21 protein levels in the liver in a STAT6-dependent manner, but FGF21 secretion in response to IL-4 was not observed in the epididymal white adipose tissue (eWAT) despite the activation of STAT6. Intraperitoneal administration of IL-33, an activator of type 2 immune responses, significantly increased the level of FGF21 in the serum and liver after 24 h, but repeated administration of IL-33 attenuated this effect. Taken together, these data demonstrate that the IL-4/IL-13–STAT6 axis regulates metabolic homeostasis through the induction of FGF21 in the liver.
Collapse
Affiliation(s)
- Seul-Gi Kang
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, 282 Munhwaro, Daejeon 35015, Korea; (S.-G.K.); (S.-E.L.); (M.-J.C.); (J.-Y.C.); (J.-T.K.); (B.-Y.Z.); (Y.-E.K.); (J.-H.L.)
- Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
| | - Seong-Eun Lee
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, 282 Munhwaro, Daejeon 35015, Korea; (S.-G.K.); (S.-E.L.); (M.-J.C.); (J.-Y.C.); (J.-T.K.); (B.-Y.Z.); (Y.-E.K.); (J.-H.L.)
- Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
| | - Min-Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, 282 Munhwaro, Daejeon 35015, Korea; (S.-G.K.); (S.-E.L.); (M.-J.C.); (J.-Y.C.); (J.-T.K.); (B.-Y.Z.); (Y.-E.K.); (J.-H.L.)
- Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
| | - Joon-Young Chang
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, 282 Munhwaro, Daejeon 35015, Korea; (S.-G.K.); (S.-E.L.); (M.-J.C.); (J.-Y.C.); (J.-T.K.); (B.-Y.Z.); (Y.-E.K.); (J.-H.L.)
- Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
| | - Jung-Tae Kim
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, 282 Munhwaro, Daejeon 35015, Korea; (S.-G.K.); (S.-E.L.); (M.-J.C.); (J.-Y.C.); (J.-T.K.); (B.-Y.Z.); (Y.-E.K.); (J.-H.L.)
- Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
| | - Ben-Yuan Zhang
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, 282 Munhwaro, Daejeon 35015, Korea; (S.-G.K.); (S.-E.L.); (M.-J.C.); (J.-Y.C.); (J.-T.K.); (B.-Y.Z.); (Y.-E.K.); (J.-H.L.)
- Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
| | - Yea-Eun Kang
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, 282 Munhwaro, Daejeon 35015, Korea; (S.-G.K.); (S.-E.L.); (M.-J.C.); (J.-Y.C.); (J.-T.K.); (B.-Y.Z.); (Y.-E.K.); (J.-H.L.)
- Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
| | - Ju-Hee Lee
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, 282 Munhwaro, Daejeon 35015, Korea; (S.-G.K.); (S.-E.L.); (M.-J.C.); (J.-Y.C.); (J.-T.K.); (B.-Y.Z.); (Y.-E.K.); (J.-H.L.)
- Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, 282 Munhwaro, Daejeon 35015, Korea; (S.-G.K.); (S.-E.L.); (M.-J.C.); (J.-Y.C.); (J.-T.K.); (B.-Y.Z.); (Y.-E.K.); (J.-H.L.)
- Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
- Translational Immunology Institute, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
- Correspondence: (H.-S.Y.); (M.S.)
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, 282 Munhwaro, Daejeon 35015, Korea; (S.-G.K.); (S.-E.L.); (M.-J.C.); (J.-Y.C.); (J.-T.K.); (B.-Y.Z.); (Y.-E.K.); (J.-H.L.)
- Department of Medical Science, School of Medicine, Chungnam National University, 266 Munhwaro, Daejeon 35015, Korea
- Correspondence: (H.-S.Y.); (M.S.)
| |
Collapse
|
7
|
Wang L, Hu J, Zhou H. Macrophage and Adipocyte Mitochondrial Dysfunction in Obesity-Induced Metabolic Diseases. World J Mens Health 2020; 39:606-614. [PMID: 33151047 PMCID: PMC8443980 DOI: 10.5534/wjmh.200163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is one of major health burdens of modern society as it contributes to the growing prevalence of its related comorbidities, such as diabetes, cardiovascular diseases, and some cancers. A series of innate immune cells, especially macrophages, and adipocytes have been implicated in the pathogenesis of obesity. Mitochondrial dysfunction, which is induced by obesity, are critical mediators in initiating inflammation in macrophages and adipocytes, and subsequent systemic insulin resistance. In this review, we discuss new findings on how obesity impairs mitochondrial function in macrophages and adipocytes and how this dysfunction contributes to obesity and its comorbidities. We also summarize drugs that treat metabolic diseases by targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Hunan, China
| | - Jie Hu
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Hunan, China
| | - Haiyan Zhou
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Hunan, China.
| |
Collapse
|
8
|
Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers (Basel) 2020; 12:cancers12061411. [PMID: 32486098 PMCID: PMC7352439 DOI: 10.3390/cancers12061411] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages are key innate immune cells in the tumor microenvironment (TME) that regulate primary tumor growth, vascularization, metastatic spread and tumor response to various types of therapies. The present review highlights the mechanisms of macrophage programming in tumor microenvironments that act on the transcriptional, epigenetic and metabolic levels. We summarize the latest knowledge on the types of transcriptional factors and epigenetic enzymes that control the direction of macrophage functional polarization and their pro- and anti-tumor activities. We also focus on the major types of metabolic programs of macrophages (glycolysis and fatty acid oxidation), and their interaction with cancer cells and complex TME. We have discussed how the regulation of macrophage polarization on the transcriptional, epigenetic and metabolic levels can be used for the efficient therapeutic manipulation of macrophage functions in cancer.
Collapse
|
9
|
Wischhusen J, Melero I, Fridman WH. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front Immunol 2020; 11:951. [PMID: 32508832 PMCID: PMC7248355 DOI: 10.3389/fimmu.2020.00951] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Growth/differentiation factor-15 (GDF-15), also named macrophage inhibitory cytokine-1, is a divergent member of the transforming growth factor β superfamily. While physiological expression is barely detectable in most somatic tissues in humans, GDF-15 is abundant in placenta. Elsewhere, GDF-15 is often induced under stress conditions, seemingly to maintain cell and tissue homeostasis; however, a moderate increase in GDF-15 blood levels is observed with age. Highly elevated GDF-15 levels are mostly linked to pathological conditions including inflammation, myocardial ischemia, and notably cancer. GDF-15 has thus been widely explored as a biomarker for disease prognosis. Mechanistically, induction of anorexia via the brainstem-restricted GDF-15 receptor GFRAL (glial cell-derived neurotrophic factor [GDNF] family receptor α-like) is well-documented. GDF-15 and GFRAL have thus become attractive targets for metabolic intervention. Still, several GDF-15 mediated effects (including its physiological role in pregnancy) are difficult to explain via the described pathway. Hence, there is a clear need to better understand non-metabolic effects of GDF-15. With particular emphasis on its immunomodulatory potential this review discusses the roles of GDF-15 in pregnancy and in pathological conditions including myocardial infarction, autoimmune disease, and specifically cancer. Importantly, the strong predictive value of GDF-15 as biomarker may plausibly be linked to its immune-regulatory function. The described associations and mechanistic data support the hypothesis that GDF-15 acts as immune checkpoint and is thus an emerging target for cancer immunotherapy.
Collapse
Affiliation(s)
- Jörg Wischhusen
- Experimental Tumor Immunology, Department of Obstetrics and Gynecology, University of Würzburg Medical School, Würzburg, Germany
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain
- Immunology and Immunotherapy Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Wolf Herman Fridman
- INSERM, UMR_S 1138, Cordeliers Research Center, Université de Paris, Sorbonne Université Team Cancer, Immune Control and Escape, Paris, France
| |
Collapse
|