1
|
Browne DJ, Miller CM, Doolan DL. Technical pitfalls when collecting, cryopreserving, thawing, and stimulating human T-cells. Front Immunol 2024; 15:1382192. [PMID: 38812513 PMCID: PMC11133553 DOI: 10.3389/fimmu.2024.1382192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
The collection, cryopreservation, thawing, and culture of peripheral blood mononuclear cells (PBMCs) can profoundly influence T cell viability and immunogenicity. Gold-standard PBMC processing protocols have been developed by the Office of HIV/AIDS Network Coordination (HANC); however, these protocols are not universally observed. Herein, we have explored the current literature assessing how technical variation during PBMC processing can influence cellular viability and T cell immunogenicity, noting inconsistent findings between many of these studies. Amid the mounting concerns over scientific replicability, there is growing acknowledgement that improved methodological rigour and transparent reporting is required to facilitate independent reproducibility. This review highlights that in human T cell studies, this entails adopting stringent standardised operating procedures (SOPs) for PBMC processing. We specifically propose the use of HANC's Cross-Network PBMC Processing SOP, when collecting and cryopreserving PBMCs, and the HANC member network International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) PBMC Thawing SOP when thawing PBMCs. These stringent and detailed protocols include comprehensive reporting procedures to document unavoidable technical variations, such as delayed processing times. Additionally, we make further standardisation and reporting recommendations to minimise and document variability during this critical experimental period. This review provides a detailed overview of the challenges inherent to a procedure often considered routine, highlighting the importance of carefully considering each aspect of SOPs for PBMC collection, cryopreservation, thawing, and culture to ensure accurate interpretation and comparison between studies.
Collapse
Affiliation(s)
- Daniel J. Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Catherine M. Miller
- College of Medicine and Dentistry, James Cook University, Cairns, QLD, Australia
| | - Denise L. Doolan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
2
|
Akiso M, Muema D, Langat R, Naidoo KK, Oino G, Mutua G, Thobakgale C, Ochiel D, Chinyenze K, Anzala O, Mureithi MW. Early antiretroviral therapy and its impact on natural killer cell dynamics in HIV-1 infected men who have sex with men: a cross-sectional pilot study evaluating the impact of early ART initiation on NK cell perturbation in HIV infection. Microbiol Spectr 2024; 12:e0357023. [PMID: 38364104 PMCID: PMC10986508 DOI: 10.1128/spectrum.03570-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Phenotypic changes and functional impairment of natural killer (NK) cells occur early in HIV-1 infection. Antiretroviral therapy (ART) effectively restores CD4+ T cell counts and suppresses HIV-1 to undetectable levels. The role and efficacy of immediate ART initiation in mitigating NK cell aberrations remain to be elucidated comprehensively. This study hypothesized that HIV-1 infection negatively influences NK cell evolution and that early ART initiation restores these perturbations. Blood samples were collected longitudinally from five acutely HIV-1 infected men who have sex with men in Nairobi, Kenya. Participants were immediately initiated on ART after HIV-1 diagnosis. Blood samples were drawn pre-infection and at sequential bi-weekly post-infection time points. Peripheral blood mononuclear cells were stained with panel NK cells surface markers to assess HIV-induced phenotypic changes by flow cytometry. Some cells were also stimulated overnight with K562 cell line, IL-2, and IL-15 and stained for flow cytometry functionality. HIV-1 infection was associated with significant reductions in the production of IFN-γ (P = 0.0264), expression of CD69 (P = 0.0110), and expression of NK cell inhibitory receptor Siglec7 (P = 0.0418). We observed an increased NK cell degranulation (P = 0.0100) and an upregulated expression of cell exhaustion marker PD-1 (P = 0.0513) at post-infection time points. These changes mainly were restored upon immediate initiation of ART, except for Siglec7 expression, whose reduced expression persisted despite ART. Some HIV-associated changes in NK cells may persist despite the immediate initiation of ART in acute HIV-1 infections. Our findings suggest that understanding NK cell dynamics and their restoration after ART can offer insights into optimizing HIV-1 treatment and potentially slowing disease progression.IMPORTANCENatural killer (NK) cells play a crucial role in controlling of HIV-1 replication and progression to disease. Perturbations of their functionality may therefore result in deleterious disease outcomes. Previous studies have demonstrated reduced NK cell functionality in chronic HIV-1 infection that positively correlated to HIV-1 viral load. This may suggest that control of HIV-1 viremia in acute HIV-1 infection may aid in enhancing NK cell response boosting the inate immunity hence effective control of viral spread and establishment of viral reservoir. Antiretroviral therapy (ART) effectively supresses HIV-1 viremia to undectable levels and restores CD4+ T cell counts. Our study highlights the significant role of early ART initiation in mitigating NK cell disruptions caused by acute HIV-1 infection. Our results suggest that early initiation of ART could have benefits beyond suppressing viral load and restoring CD4+ T cell counts. In addition, it could boost the innate immunity necessary to control disease progression.
Collapse
Affiliation(s)
- Matrona Akiso
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Daniel Muema
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
- HIV Pathogenesis Programme, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Robert Langat
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota Twin Cities, Twin Cities, Minnesota, USA
| | - Kewreshini K. Naidoo
- HIV Pathogenesis Programme, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Geoffrey Oino
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Gaudensia Mutua
- International AIDS Vaccine Initiative, New York, New York, USA
| | - Christina Thobakgale
- Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Witwatersrand, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Daniel Ochiel
- International AIDS Vaccine Initiative, New York, New York, USA
| | | | - Omu Anzala
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Marianne W. Mureithi
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
3
|
Linggi B, Cremer J, Wang Z, Van Viegen T, Vermeire S, Lefevre P, Shackelton LM, Jairath V, Teft W, Vande Casteele N, Verstockt B. Effect of storage time on peripheral blood mononuclear cell isolation from blood collected in vacutainer CPT™ tubes. J Immunol Methods 2023; 519:113504. [PMID: 37257687 DOI: 10.1016/j.jim.2023.113504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Clinical trials of novel therapies for the treatment of ulcerative colitis (UC) may benefit from immune cell profiling, however implementation of this methodology is limited in the multicenter trial setting by necessity of timely (within 6 to 8 h) isolation and processing of peripheral blood mononuclear cells (PBMC) from whole blood samples. Becton Dickinson Vacutainer CPT™ Cell Preparation Tubes (CPT™) limit required processing prior to shipping to a central lab to an initial centrifugation step within 24 h of sample collection. As shipping may delay final processing beyond 24 h, we analyzed cell viability and T cell composition in whole blood stored in CPT™ to determine if their use may accommodate processing delays typical for multicenter clinical trials. METHODS Whole blood samples from 3 patients with UC were collected in CPT™ (15 tubes/patient) and PBMC were processed at various timepoints (24-96 h). Cell viability and T cell composition (26 types) were evaluated by flow cytometry. Variability between technical and biological replicates was evaluated in the context of cell-type abundance, delayed processing time, and data normalization. RESULTS Total cell viability was <50% when processing was delayed to 48 h after collection and was further reduced at later processing timepoints. The effect of delayed processing on cell abundance varied widely across cell types, with CD4+, CD8+, naïve effector CD8+, and Tcm CD4 + T cells displaying the least variability in abundance with delayed processing. Normalization of cell counts to cell types other than total T cells corrected for the effect of delayed processing for several cell types, particularly Th17. CONCLUSIONS Based on these data, processing of PBMC in CPT™ should ideally be performed within 48 h. Delayed processing of PBMC in CPT™ may be considered for cell types that are robust to these conditions. Normalization of cell abundance to different parental cell-types may reduce variability in quantitation and should be used in conjunction with the expected effect size to meet the experimental goals of a multicenter clinical trial.
Collapse
Affiliation(s)
- Bryan Linggi
- Alimentiv Inc., 100 Dundas Street, Suite 200, London, ON, Canada.
| | - Jonathan Cremer
- Department of Microbiology and Immunology, Laboratory of Allergy and Clinical Immunology, KU Leuven, Herestraat 49, Leuven, Belgium; Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven, Herestraat 49, Leuven, Belgium.
| | - Zhongya Wang
- Alimentiv Inc., 100 Dundas Street, Suite 200, London, ON, Canada.
| | - Tanja Van Viegen
- Alimentiv Inc., 100 Dundas Street, Suite 200, London, ON, Canada.
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven, Herestraat 49, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Herestraat 49, Leuven, Belgium.
| | - Pavine Lefevre
- Alimentiv Inc., 100 Dundas Street, Suite 200, London, ON, Canada.
| | | | - Vipul Jairath
- Alimentiv Inc., 100 Dundas Street, Suite 200, London, ON, Canada; Departments of Medicine and Epidemiology and Biostatistics, Western University, 1151 Richmond St, London, ON, Canada.
| | - Wendy Teft
- Alimentiv Inc., 100 Dundas Street, Suite 200, London, ON, Canada.
| | - Niels Vande Casteele
- Alimentiv Inc., 100 Dundas Street, Suite 200, London, ON, Canada; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| | - Bram Verstockt
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven, Herestraat 49, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
4
|
Arif S, Domingo-Vila C, Pollock E, Christakou E, Williams E, Tree TIM. Monitoring islet specific immune responses in type 1 diabetes clinical immunotherapy trials. Front Immunol 2023; 14:1183909. [PMID: 37283770 PMCID: PMC10240960 DOI: 10.3389/fimmu.2023.1183909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
The number of immunotherapeutic clinical trials in type 1 diabetes currently being conducted is expanding, and thus there is a need for robust immune-monitoring assays which are capable of detecting and characterizing islet specific immune responses in peripheral blood. Islet- specific T cells can serve as biomarkers and as such can guide drug selection, dosing regimens and immunological efficacy. Furthermore, these biomarkers can be utilized in patient stratification which can then benchmark suitability for participation in future clinical trials. This review focusses on the commonly used immune-monitoring techniques including multimer and antigen induced marker assays and the potential to combine these with single cell transcriptional profiling which may provide a greater understanding of the mechanisms underlying immuno-intervention. Although challenges remain around some key areas such as the need for harmonizing assays, technological advances mean that multiparametric information derived from a single sample can be used in coordinated efforts to harmonize biomarker discovery and validation. Moreover, the technologies discussed here have the potential to provide a unique insight on the effect of therapies on key players in the pathogenesis of T1D that cannot be obtained using antigen agnostic approaches.
Collapse
|
5
|
Verderio P, Ciniselli CM, Gaignaux A, Pastori M, Saracino S, Kofanova O, Betsou F. External Quality Assurance programs for processing methods provide evidence on impact of preanalytical variables. N Biotechnol 2022; 72:29-37. [PMID: 36049650 DOI: 10.1016/j.nbt.2022.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 12/14/2022]
Abstract
An annual External Quality Assurance (EQA) program has been provided to processing laboratories over the last ten years, allowing them to assess the performance of their processing methods, such as nucleic acid extractions or peripheral blood mononuclear cell (PBMC) isolation and cryopreservation. The objective of this study was to perform a global analysis on almost 1000 EQA scheme/participant data in order to assess (i) the impact of critical preanalytical factors on quantitative or qualitative attributes of different types of specimens and (ii) laboratory performance pattern over time. Statistical analysis was performed within each EQA scheme based on categorized preanalytical data provided by the participants and on centralized measurements of relevant quality attributes of the produced specimens (z-scores): DNA, cell-free (cf)DNA or RNA extraction from blood, DNA or RNA extraction from formalin fixed tissue, DNA or RNA extraction from frozen tissue, DNA extraction from saliva or stool, viable PBMC isolation and cryopreservation. The most critical preanalytical factors in nucleic acid extraction schemes were the nucleic acid extraction method and kit, the elution buffer, the enzymes used during extraction, the input material quantity and the storage temperature. Several indications of laboratory performance improvement over time could be seen. The conclusions are that EQA for processing methods provides unique evidence-based insights into the impact of preanalytical factors and the comparative performance of different processing methods and kits, while supporting laboratories in validating their processing methods.
Collapse
Affiliation(s)
- Paolo Verderio
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy
| | - Chiara Maura Ciniselli
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy
| | - Amélie Gaignaux
- Integrated Biobank of Luxembourg (IBBL), Luxembourg Institute of Health, 1 rue Louis Rech, 3555, Luxembourg
| | - Marta Pastori
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy
| | - Sabrina Saracino
- Integrated Biobank of Luxembourg (IBBL), Luxembourg Institute of Health, 1 rue Louis Rech, 3555, Luxembourg
| | - Olga Kofanova
- Integrated Biobank of Luxembourg (IBBL), Luxembourg Institute of Health, 1 rue Louis Rech, 3555, Luxembourg.
| | - Fay Betsou
- Integrated Biobank of Luxembourg (IBBL), Luxembourg Institute of Health, 1 rue Louis Rech, 3555, Luxembourg; Institut Pasteur, Université Paris Cité, CRBIP, F-75015 Paris, France
| |
Collapse
|
6
|
Waerlop G, Leroux-Roels G, Lambe T, Bellamy D, Medaglini D, Pettini E, Cox RJ, Trieu MC, Davies R, Bredholt G, Montomoli E, Gianchecchi E, Clement F. Harmonization and qualification of an IFN-γ Enzyme-Linked ImmunoSpot assay (ELISPOT) to measure influenza-specific cell-mediated immunity within the FLUCOP consortium. Front Immunol 2022; 13:984642. [PMID: 36159843 PMCID: PMC9493492 DOI: 10.3389/fimmu.2022.984642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza continues to be the most important cause of viral respiratory disease, despite the availability of vaccines. Today’s evaluation of influenza vaccines mainly focuses on the quantitative and functional analyses of antibodies to the surface proteins haemagglutinin (HA) and neuraminidase (NA). However, there is an increasing interest in measuring cellular immune responses targeting not only mutation-prone surface HA and NA but also conserved internal proteins as these are less explored yet potential correlates of protection. To date, laboratories that monitor cellular immune responses use a variety of in-house procedures. This generates diverging results, complicates interlaboratory comparisons, and hampers influenza vaccine evaluation. The European FLUCOP project aims to develop and standardize assays for the assessment of influenza vaccine correlates of protection. This report describes the harmonization and qualification of the influenza-specific interferon-gamma (IFN-γ) Enzyme-Linked ImmunoSpot (ELISpot) assay. Initially, two pilot studies were conducted to identify sources of variability during sample analysis and spot enumeration in order to develop a harmonized Standard Operating Procedure (SOP). Subsequently, an assay qualification study was performed to investigate the linearity, intermediate precision (reproducibility), repeatability, specificity, Lower and Upper Limits of Quantification (LLOQ-ULOQ), Limit of Detection (LOD) and the stability of signal over time. We were able to demonstrate that the FLUCOP harmonized IFN-γ ELISpot assay procedure can accurately enumerate IFN-γ secreting cells in the analytical range of 34.4 Spot Forming Units (SFU) per million cells up to the technical limit of the used reader and in the linear range from 120 000 to 360 000 cells per well, in plates stored up to 6 weeks after development. This IFN-γ ELISpot procedure will hopefully become a useful and reliable tool to investigate influenza-specific cellular immune responses induced by natural infection or vaccination and can be an additional instrument in the search for novel correlates of protection.
Collapse
Affiliation(s)
- Gwenn Waerlop
- Center for Vaccinology (CEVAC), University Hospital, Ghent University, Ghent, Belgium
- *Correspondence: Gwenn Waerlop,
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), University Hospital, Ghent University, Ghent, Belgium
| | - Teresa Lambe
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Duncan Bellamy
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Mai-Chi Trieu
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Richard Davies
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Geir Bredholt
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| | | | - Frédéric Clement
- Center for Vaccinology (CEVAC), University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|