1
|
Haque MA, Haque ME, Parvin MK, Kamal MM, Islam TR, Sadekuzzaman M, Islam MA, Khatun MM, Hossain MT, Uddin MA, Nahar SS, Khasruzzaman AKM, Islam MA. Determination of immunogenicity of an inactivated ND-vaccine developed experimentally with Newcastle disease virus (Genotype VII.2) local isolates of Bangladesh. Front Immunol 2024; 15:1482314. [PMID: 39569197 PMCID: PMC11576377 DOI: 10.3389/fimmu.2024.1482314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Background Newcastle disease virus (NDV) genotype VII severely affects poultry, causing respiratory and neurological symptoms with a high rate of morbidity and mortality. The research aimed to develop an inactivated ND vaccine using local isolates (Genotype VII.2) and assess its immunogenicity compared to other commercial live ND vaccines. Methods An inactivated vaccine using a candidate NDV (GenBank: OR924274.1) was developed according to WOAH guidelines following inactivation, sterility, purity, and safety tests. The birds were vaccinated through subcutaneous (SC) and intramuscular (IM) routes using three doses (0.25, 0.5, and 1.0 ml/bird). Immunogenicity and protective potentiality of the experimentally developed inactivated ND vaccine and live commercial ND vaccine (intra-ocularly/IO) were compared by challenge studies using three vaccination schedules: killed-followed-killed, live-followed-killed, and live-followed-live. Results The birds vaccinated with 1.0 ml/bird SC showed higher antibody titers compared to those of IM-vaccinated groups. Birds vaccinated with the live-followed-killed commercial ND vaccines had slightly higher antibody titers compared to those vaccinated with killed-followed-killed and live-followed-live vaccines. Birds vaccinated with the killed-followed-killed ND vaccine showed a higher protection rate (100%) compared to live-followed-killed (83±5.77%) and live-followed-live (57±5.77%) vaccines. Birds vaccinated with killed-followed-killed group showed a slower decline rate of antibody titers than other groups. This regimen provided significantly better immunity, highlighting its potential in controlling ND outbreaks in Bangladesh's poultry. Conclusion The study found that the inactivated ND vaccine, developed with the locally circulating isolate of genotype-VII.2 of NDV, might play an important role in effective control and management of ND in the commercial poultry population in Bangladesh.
Collapse
Affiliation(s)
- Mohammad Aynul Haque
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Enamul Haque
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mst Kohinoor Parvin
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Mostofa Kamal
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Tanbin Rubaiya Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Sadekuzzaman
- Central Disease Investigation Laboratory, Department of Livestock Services, Dhaka, Bangladesh
| | - Md Ariful Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mst Minara Khatun
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Mohammad Asir Uddin
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sham Soun Nahar
- Livestock Research Institute, Department of Livestock Services, Dhaka, Bangladesh
| | - A K M Khasruzzaman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Alimul Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
2
|
Shen X, Zhang A, Zhao R, Yin L, Yin D, Dai Y, Hou H, Wang J, Hu X, Pan X, Zhang D, Liu W, Liu Y, Zhan K. Effects of adding antibiotics to an inactivated oil-adjuvant avian influenza vaccine on vaccine characteristics and chick health. Poult Sci 2024; 103:104135. [PMID: 39106695 PMCID: PMC11343057 DOI: 10.1016/j.psj.2024.104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024] Open
Abstract
During poultry immunization, antibiotics are typically added to inactivated oil-adjuvant avian influenza (AI) vaccines. Here, we evaluated the effects of adding ceftiofur, a third-generation cephalosporin, to an AI vaccine on vaccine stability and structure and on chick growth, immune efficacy, blood concentrations, biochemical and immunological indices, and gut microbiota. The results demonstrated that neither aqueous ceftiofur sodium nor ceftiofur hydrochloride oil emulsion formed a stable mixture with the vaccine. Adding ceftiofur formulations, particularly ceftiofur hydrochloride, at >4% significantly destabilized the vaccine's water-in-oil structures. Adding ceftiofur also increased vaccine malabsorption at the injection site; specifically, adding ceftiofur hydrochloride reduced H5N8 and H7N9 antibody titers after the first immunization (P < 0.05) and H7N9 antibody titers after the second immunization (P < 0.01). Serum drug concentrations did not differ significantly between the groups with ceftiofur sodium and hydrochloride addition. Ceftiofur addition increased postvaccination chick weight loss; compared with the vaccine alone, ceftiofur sodium-vaccine mixture increased chick weight significantly (P < 0.05). Ceftiofur addition also increased stress indices and reduced antioxidant capacity significantly (P < 0.05 or P < 0.01). Vaccination-related immune stress reduced gut microbiota diversity in chicks; ceftiofur addition reversed this change. AI vaccine immunization significantly reduced the relative abundance of Lactobacillus and Muribaculaceae but significantly increased that of Bacteroides and Eubacterium coprostanoligenes group. Ceftiofur addition restored the gut microbiota structure; in particular, ceftiofur hydrochloride addition significantly increased the abundance of the harmful gut microbes Escherichia-Shigella and Enterococcus, whereas ceftiofur sodium addition significantly reduced it. The changes in gut microbiota led to alterations in metabolic pathways related to membrane transport, amino acids, and carbohydrates. In conclusion, adding ceftiofur to the AI vaccine had positive effects on chick growth and gut microbiota modulation; however, different antibiotic concentrations and formulations may disrupt vaccine structure, possibly affecting vaccine safety and immunization efficacy. Thus, the addition of antibiotics to oil-adjuvant vaccines is associated with a risk of immunization failure and should be applied to poultry with caution.
Collapse
Affiliation(s)
- Xuehuai Shen
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Anyun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ruihong Zhao
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Lei Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Dongdong Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Yin Dai
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Hongyan Hou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Jieru Wang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xiaomiao Hu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Danjun Zhang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Wei Liu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Zhan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China.
| |
Collapse
|
3
|
Ganapathy K, Parthiban S. Pros and Cons on Use of Live Viral Vaccines in Commercial Chicken Flocks. Avian Dis 2024; 67:410-420. [PMID: 38300660 DOI: 10.1637/aviandiseases-d-23-99998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2023] [Indexed: 02/02/2024]
Abstract
The poultry industry is the largest source of meat and eggs for the growing human population worldwide. Key concerns in poultry farming are nutrition, management, flock health, and biosecurity measures. As part of the flock health, use of live viral vaccines plays a vital role in the prevention of economically important and common viral diseases. This includes diseases and production losses caused by Newcastle disease virus, infectious bronchitis virus, infectious laryngotracheitis virus, infectious bursal disease virus, Marek's disease virus, chicken infectious anemia virus, avian encephalomyelitis virus, fowlpox virus, and avian metapneumovirus. These viruses cause direct and indirect harms, such as financial losses worth millions of dollars, loss of protein sources, and threats to animal welfare. Flock losses vary by type of poultry, age of affected animals, co-infections, immune status, and environmental factors. Losses in broiler birds can consist of high mortality, poor body weight gain, high feed conversion ratio, and increased carcass condemnation. In commercial layers and breeder flocks, losses include higher than normal mortality rate, poor flock uniformity, drops in egg production and quality, poor hatchability, and poor day-old-chick quality. Despite the emergence of technology-based vaccines, such as inactivated, subunit, vector-based, DNA or RNA, and others, the attenuated live vaccines remain as important as before. Live vaccines are preferred in the global veterinary vaccine market, accounting for 24.3% of the global market share in 2022. The remaining 75% includes inactivated, DNA, subunit, conjugate, recombinant, and toxoid vaccines. The main reason for this is that live vaccines can induce innate, mucosal, cellular, and humoral immunities by single or multiple applications. Some live vaccine combinations provide higher and broader protection against several diseases or strains of viruses. This review aimed to explore insights on the pros and cons of attenuated live vaccines commonly used against major viral infections of the global chicken industry, and the future road map for improvement.
Collapse
Affiliation(s)
- Kannan Ganapathy
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Cheshire, U.K.,
| | - Sivamurthy Parthiban
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Cheshire, U.K
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| |
Collapse
|
4
|
Jekebekov KK, Assanzhanova NN, Nurpeisova AS, Ryskeldinova SZ, Absatova ZS, Abay ZS, Shayakhmetov YA, Omurtay AD, Moldagulova SU, Kalimolda EZ, Sadikalieva SO, Shorayeva KA, Zakarya KD. [Selection of conditions for effective inactivation of Pseudopestis avium virus (Paramyxoviridae: Orthoavulovirus: Avian orthoavulovirus 1) for the production of a Newcastle disease vaccine]. Vopr Virusol 2023; 68:124-131. [PMID: 37264847 DOI: 10.36233/0507-4088-163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Newcastle disease (ND) is classified as especially dangerous pathogen. Its primary source is an infected or recovered bird. The virus shedding begins just in a day after infection, and virus remains in the body for another 2-4 months after the recovery. The complexity of the final elimination of the causative agent of the disease lies in its ability for long-term preservation in the external environment and the possibility of constant circulation in one complex between groups of birds of different sex and age. Therefore, the main element of protecting birds from ND is immunoprophylaxis that is based on vaccines containing an inactivated ND virus (NDV). The aim of the work ‒ is to optimize the parameters of inactivation of the NDV actual strain H with formaldehyde at final concentrations of 0.01, 0.025, 0.05, and 0.1% under temperature conditions of 20 2 and 37 0.5 C. MATERIALS AND METHODS We used a virus-containing suspension of the NDV strain H with an initial biological activity of 10.75 lg EID50/cm3 grown by cultivation in 10-day-old developing chick embryos. RESULTS On the 16th day after the administration of the tested suspensions of NDV inactivated at different temperatures and concentrations of the inactivant , the geometric mean titers of antibodies to NDV in sera of vaccinated birds were at least 1 : 63 in the hemagglutination inhibition reaction, indicating that the studied inactivated suspensions were antigenically active. CONCLUSION The optimal parameters of the inactivation mode (final concentration, temperature and time of inactivation) of the NDV strain H were established. The inactivation process at 37 0.5 C with inactivant concentrations of 0.01, 0.025, 0.05, and 0.1% lasts up to 72, 22, 18, and 12 hours, respectively. The inactivation process at 20 2 C with inactivant concentrations of 0.05 and 0.1% lasts up to 22 and 18 hours, respectively.
Collapse
Affiliation(s)
| | | | | | | | - Z S Absatova
- Research Institute for Biological Safety Problems
| | - Z S Abay
- Research Institute for Biological Safety Problems
| | | | - A D Omurtay
- Research Institute for Biological Safety Problems
| | | | | | | | | | - K D Zakarya
- Research Institute for Biological Safety Problems
| |
Collapse
|
5
|
Zhang Y, Wang W, Li Y, Liu J, Wang W, Bai J, Yang Z, Liu H, Xiao S. A pigeon paramyxovirus type 1 isolated from racing pigeon as an inactivated vaccine candidate provides effective protection. Poult Sci 2022; 101:102097. [PMID: 36055029 PMCID: PMC9449850 DOI: 10.1016/j.psj.2022.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Pigeon paramyxovirus type 1 (PPMV-1), a variant of Newcastle disease virus (NDV), causes severe Newcastle disease (ND) in pigeons. However, there is no PPMV-1 vaccine available worldwide. In this study, a strain of PPMV-1 was isolated from outbreaks in a vaccinated racing pigeon (Columbia livia) loft in China, namely, PPMV-1/pigeon/Gansu/China/02/2020 (GS02). Experimental infection with GS02 showed mortality rates of 100% and 87.50% in 4- and 12-week-old pigeons, respectively, suggesting that GS02 is virulent and more sensitive to young pigeons. The whole genome of GS02 determined the fusion (F) protein possessing virulence cleavage site 112RRQKRF117. Phylogenetic analysis indicated that GS02 was a subgenotype VI.2.1.1.2.2 (VIk) of Class II NDV and more closely related to the JS/06/20/Pi (MW271791) strain, but it was far from the genetic distance from the commercial vaccine chicken-origin La Sota strain. Using inactivated GS02 as a vaccine candidate and inactivated vaccine La Sota to immunize the pigeons, both of them provided complete protection against GS02 challenge. The GS02 vaccine candidate induced higher antibody titers than the La Sota vaccine, and cross-reactivity testing showed antigenically slight differences between GS02 and La Sota. These results indicated that the GS02 candidate could be a potential pigeon-derived vaccine for the prevention and control of PPMV-1 in pigeons.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Weifan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongkun Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinming Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenbin Wang
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Jun Bai
- Yangling Vocational and Technical College, Yangling 712100, Shaanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Exosome-Based Vaccines: Pros and Cons in the World of Animal Health. Viruses 2021; 13:v13081499. [PMID: 34452364 PMCID: PMC8402771 DOI: 10.3390/v13081499] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Due to the emergence of antibiotic resistance and new and more complex diseases that affect livestock animal health and food security, the control of epidemics has become a top priority worldwide. Vaccination represents the most important and cost-effective measure to control infectious diseases in animal health, but it represents only 23% of the total global animal health market, highlighting the need to develop new vaccines. A recent strategy in animal health vaccination is the use of extracellular vesicles (EVs), lipid bilayer nanovesicles produced by almost all living cells, including both prokaryotes and eukaryotes. EVs have been evaluated as a prominent source of viral antigens to elicit specific immune responses and to develop new vaccination platforms as viruses and EVs share biogenesis pathways. Preliminary trials with lymphocytic choriomeningitis virus infection (LCMV), porcine reproductive and respiratory syndrome virus (PRRSV), and Marek's disease virus (MDV) have demonstrated that EVs have a role in the activation of cellular and antibody immune responses. Moreover, in parasitic diseases such as Eimeria (chickens) and Plasmodium yoelii (mice) protection has been achieved. Research into EVs is therefore opening an opportunity for new strategies to overcome old problems affecting food security, animal health, and emerging diseases. Here, we review different conventional approaches for vaccine design and compare them with examples of EV-based vaccines that have already been tested in relation to animal health.
Collapse
|
7
|
Chegrynets AI, Saliy ОО, Sobko IA, Krasinko VO. Immunological evaluation of inactivated Newcastle disease vaccine depending on adjuvant composition. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Newcastle disease is a global problem that is being recorded in most countries and also a serious obstacle to exchange of genetic material of poultry in various countries of the world. Control of the Newcastle disease comprises correct injection of efficacious vaccines so as to decrease or eliminate the clinical disease. Our goal was to perform comparative studies of the vaccines against Newcastle disease of water in oil type, the adjuvant being mineral oil mixed with emulsifiers (Span-80 and Tween-80) and ready-to-use adjuvant system (Montanide ISA 70), and study the impact of composition of adjuvant constituent on physical-chemical and immunogenic properties of inactivated vaccines. To reproduce virus-containing material and carried out titration of the viruses, we used chicken embryos free of pathogenic microflora. Aqueous phase for the preparation of emulsion-based vaccines of water in oil type consisted of antigen to Newcastle disease of La-Sota strain, manufactured by Biotestlab Ltd, and phosphate-saline buffer. To evaluate the effectiveness of the vaccine and induce immune response, we used 1-day old pathogen-free chickens, which were obtained from chicken embryos free of pathogenic microflora. As the positive control in the experiment, we used commercial vaccine. One-day chickens were divided into 3 groups (I, II, III) comprising 12 individuals each and one group (IV) consisting of 8 individuals as the control group with individual numeration. Chickens in groups I, II and III were divided into two subgroups (n = 8 and n = 4) to determine immunogenic efficiency and safety of the vaccine. Immunization was carried out through single subcutaneous injections in the region of the neck. To study immunogenic efficiency, the chickens were immunized with the dose of 0.1 mL (1 dose), and 0.2 mL (2 doses) to determine safety. After the immunization of 1-day old pathogen-free chickens with 0.1 mL dose, the obtained level of antibodies in the serum of vaccinated chickens on days 14, 21, 28, 35 and 42 after the vaccination indicated the ability of provoking the immune response to Newcastle disease at high level and safety of the vaccination for chickens. All the recipes of the examined series of the vaccines and the commercial vaccine produced appropriate level of viscosity according to the criterion equaling ≤ 200 mm2/s at Р <0.05, promoting fluidity of the vaccine and providing easier passage through the needle during the application. Both of the studied vaccines may be used in poultry farming for prophylaxis of Newcastle disease among chickens.
Collapse
|