1
|
Rhee DJ, Jhingran A, Huang K, Netherton TJ, Fakie N, White I, Sherriff A, Cardenas CE, Zhang L, Prajapati S, Kry SF, Beadle BM, Shaw W, O'Reilly F, Parkes J, Burger H, Trauernicht C, Simonds H, Court LE. Clinical acceptability of fully automated external beam radiotherapy for cervical cancer with three different beam delivery techniques. Med Phys 2022; 49:5742-5751. [PMID: 35866442 PMCID: PMC9474595 DOI: 10.1002/mp.15868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/16/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose To fully automate CT‐based cervical cancer radiotherapy by automating contouring and planning for three different treatment techniques. Methods We automated three different radiotherapy planning techniques for locally advanced cervical cancer: 2D 4‐field‐box (4‐field‐box), 3D conformal radiotherapy (3D‐CRT), and volumetric modulated arc therapy (VMAT). These auto‐planning algorithms were combined with a previously developed auto‐contouring system. To improve the quality of the 4‐field‐box and 3D‐CRT plans, we used an in‐house, field‐in‐field (FIF) automation program. Thirty‐five plans were generated for each technique on CT scans from multiple institutions and evaluated by five experienced radiation oncologists from three different countries. Every plan was reviewed by two of the five radiation oncologists and scored using a 5‐point Likert scale. Results Overall, 87%, 99%, and 94% of the automatically generated plans were found to be clinically acceptable without modification for the 4‐field‐box, 3D‐CRT, and VMAT plans, respectively. Some customizations of the FIF configuration were necessary on the basis of radiation oncologist preference. Additionally, in some cases, it was necessary to renormalize the plan after it was generated to satisfy radiation oncologist preference. Conclusion Approximately, 90% of the automatically generated plans were clinically acceptable for all three planning techniques. This fully automated planning system has been implemented into the radiation planning assistant for further testing in resource‐constrained radiotherapy departments in low‐ and middle‐income countries.
Collapse
Affiliation(s)
- Dong Joo Rhee
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA.,Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kai Huang
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA.,Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tucker J Netherton
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nazia Fakie
- Division of Radiation Oncology and Medical Physics, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Ingrid White
- Radiotherapy Department, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Alicia Sherriff
- Department of Oncology, University of the Free State, Bloemfontein, South Africa
| | - Carlos E Cardenas
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lifei Zhang
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Surendra Prajapati
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen F Kry
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Beth M Beadle
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - William Shaw
- Department of Medical Physics (G68), University of the Free State, Bloemfontein, South Africa
| | - Frederika O'Reilly
- Department of Medical Physics (G68), University of the Free State, Bloemfontein, South Africa
| | - Jeannette Parkes
- Division of Radiation Oncology and Medical Physics, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Hester Burger
- Division of Radiation Oncology and Medical Physics, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Chris Trauernicht
- Division of Medical Physics, Stellenbosch University, Tygerberg Academic Hospital, Cape Town, South Africa
| | - Hannah Simonds
- Division of Radiation Oncology, Stellenbosch University, Tygerberg Academic Hospital, Cape Town, South Africa
| | - Laurence E Court
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|