1
|
Zhou Y, Huang H, Yuan Q, Ren J, Wu J, Zhao X, Lin Y, Lin Z, Xu L. Hydrogel dressing composed of nanoAg@QAC promotes the healing of bacterial infected diabetic wounds. BIOMATERIALS ADVANCES 2025; 169:214143. [PMID: 39662166 DOI: 10.1016/j.bioadv.2024.214143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Diabetes mellitus ranks as the eighth most prevalent cause of mortality and disability worldwide. It is a major challenge for clinics to treat diabetic-infected wounds. The hydrogel (referred to as NanoAg@QAC), which combines the advantages of nanosilver (NanoAg) and quaternary ammonium chitosan (QAC), possesses the characteristics of an ideal wound dressing, including proper mechanical properties, antimicrobial activity, anti-biofilm properties, and cytocompatibility. The NanoAg@QAC hydrogel proved to be efficacious in treating infections caused by S. aureus and P. aeruginosa in vivo, thereby promoting wound closure during the initial phase of healing. The application of the NanoAg@QAC hydrogel efficiently suppressed M1-type macrophage marker iNOS expression and simultaneously enhanced the M2-type macrophage marker CD206, which promoted the M1 to M2 transition. The hydrogel significantly reduced the pro-inflammatory cytokine interleukin-1β (IL-1β) and increased the levels of vascular endothelial growth factor A (VEGFA), which alleviated the inflammatory response of the wound and promoted neovascularization. Furthermore, the NanoAg@QAC hydrogel enhanced tissue regeneration and collagen deposition. Thisw study demonstrates that the NanoAg@QAC hydrogel exhibits significant potential for application in the treatment of diabetic-infected wounds.
Collapse
Affiliation(s)
- Yanyan Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Haiyan Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Qi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Jingyuan Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Jiashen Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Xilin Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Yuchun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China.
| | - Zhongning Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China.
| | - Ling Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China; Shenzhen Research Institute of Xiamen University, Shenzhen, China.
| |
Collapse
|
2
|
Olyaei A, Sadeghpour M. Recent advances in the synthesis of highly substituted imidazolidines. RSC Adv 2024; 14:30758-30806. [PMID: 39328874 PMCID: PMC11426194 DOI: 10.1039/d4ra06010e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Imidazolidine is a saturated heterocycle with a cyclic aminal core that can be found in natural products and biologically active molecules. Additionally, these heterocyclic compounds have been utilized as chiral ligands, N-heterocyclic carbene precursors, and catalysts in organic synthesis. This review is an attempt to compile the literature of various synthetic procedures of highly substituted imidazolidines, chiral imidazolidines with high diastereoselectivities and enantioselectivities, bis-imidazolidines, and spiro-imidazolidines, as well as their pharmacological properties during the period from 1949 to 2023.
Collapse
Affiliation(s)
- Abolfazl Olyaei
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran
| | - Mahdieh Sadeghpour
- Department of Chemistry, Qazvin Branch, Islamic Azad University Qazvin Iran
| |
Collapse
|
3
|
Safarov R, Fedotova O, Uvarova A, Gordienko M, Menshutina N. Review of Intranasal Active Pharmaceutical Ingredient Delivery Systems. Pharmaceuticals (Basel) 2024; 17:1180. [PMID: 39338342 PMCID: PMC11435088 DOI: 10.3390/ph17091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
In recent decades, there has been an increased interest in the development of intranasal delivery systems for active pharmaceutical ingredients (APIs) not only for treating local nasal diseases but also for treating systemic diseases, central nervous system (CNS) disorders, and vaccine delivery. The nasal cavity possesses a unique set of anatomical characteristics for delivering active pharmaceutical ingredients, but there are several limitations that recent research in the field of the intranasal administration of APIs aims to overcome. For the effective delivery of nasal preparations, active pharmaceutical ingredients are incorporated into various micro- and nanosystems. Some of the most commonly encountered API delivery systems in the scientific literature include liposomal systems, polymer particles with mucoadhesive properties, in situ gels, nano- and microemulsions, and solid lipid particles. This article provides a review of research on the development of nasal preparations for treating local nasal cavity diseases (in particular, for antibiotic delivery), systemic diseases (analgesics, drugs for cardiovascular diseases, antiviral and antiemetic drugs), CNS disorders (Alzheimer's disease, Parkinson's disease, epilepsy, schizophrenia, depression), and vaccine delivery. The literature data show that active research is underway to reformulate drugs of various pharmacotherapeutic groups into a nasal form.
Collapse
Affiliation(s)
| | - Olga Fedotova
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia (A.U.)
| | | | | | | |
Collapse
|
4
|
Mahajan HS, Jadhao VD, Chandankar SM. Pullulan and Pluronic F-127 based in situ gel system for intranasal delivery: Development, in vitro and in vivo evaluation. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221110284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The current work seeks to use Pullulan and Pluronic F-127 (PF-127), a new gel-forming material, for sildenafil citrate (SLC) intranasal delivery. The cold approach was used to develop an SLC-loaded in situ gel based on thermoreversible polymer PF-127 and mucoadhesive polymer Pullulan. In situ gel systems based on Pullulan responds intelligently to environmental stimuli like charge, pH, temperature, light, and redox. To achieve gelation at physiological temperature formulations were modified to have gelation temperatures lower than 34.1°C. Physical appearance and rheological measurements were used to calculate the temperature of gelation. With the addition of increasing quantities of Pullulan, the gelation temperatures fell (from 34.1°C for 8% w/v, 10% w/v, and 12% w/v 0.5% Pullulan). In the goat nasal mucosal membrane, Pullulan concentration increased the mucoadhesive force in terms of detachment stress. The results of drug permeation testing in vitro investigations over the goat nasal mucosa showed that utilizing an in situ gelling formulation with a Pullulan content of 0.5% or higher can greatly boost the effective penetration coefficient. The formulation was shown to be safe for the nasal mucosa after a histological investigation. Conclusively, Pullulan and PF-127 may be appropriate carriers for SLC intranasal administration.
Collapse
Affiliation(s)
- Hitendra S Mahajan
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Vikram D Jadhao
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Sachin M Chandankar
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| |
Collapse
|
5
|
Belgamwar AV, Khan SA, Yeole PG. Intranasal dolutegravir sodium loaded nanoparticles of hydroxypropyl-beta-cyclodextrin for brain delivery in Neuro-AIDS. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: Formulation, optimization and in vivo characterization. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Ivanova NA, Trapani A, Franco CD, Mandracchia D, Trapani G, Franchini C, Corbo F, Tripodo G, Kolev IN, Stoyanov GS, Bratoeva KZ. In vitro and ex vivo studies on diltiazem hydrochloride-loaded microsponges in rectal gels for chronic anal fissures treatment. Int J Pharm 2018; 557:53-65. [PMID: 30580086 DOI: 10.1016/j.ijpharm.2018.12.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Abstract
Diltiazem hydrochloride, topically applied at 2% concentration, is considered effective for the treatment of chronic anal fissures, although it involves several side effects among which anal pruritus and postural hypotension. To test the hypothesis that a sustained delivery system of diltiazem hydrochloride may be helpful for the treatment of chronic anal fissures, in the present study we evaluated the potential of gels containing diltiazem hydrochloride entrapped in microsponges. Such microsponges were based on Eudragit RS 100 and the effect of some formulation variables was assessed by a 23 full factorial screening design. An optimized formulation of diltiazem hydrochloride microsponges was dispersed in Methylcellulose 2% or Poloxamer 407 20% and the resulting gels (micro-l-diltiazem hydrochloride 2%) were subjected to in vitro drug release, ex vivo permeability and drug deposition after application on porcine rectal mucosa. The results showed a prolonged release up to 24 h from micro-l-diltiazem hydrochloride at 2% in the gels. The permeation tests revealed up to 18% higher drug retention on the mucosal tissue after 24 h by the micro-l-diltiazem hydrochloride 2% gels compared to conventional diltiazem hydrochloride gels at 2%. These results suggest that diltiazem hydrochloride-loaded microsponges dispersed in rectal gels may be useful to overcome some limitations of conventional local chronic anal fissure therapy.
Collapse
Affiliation(s)
- Nadezhda Antonova Ivanova
- Faculty of Pharmacy, Medical University, "Prof. Dr. Paraskev Stoyanov", 84 Tsar Osvoboditel str., Varna, Bulgaria
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy.
| | | | - Delia Mandracchia
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Carlo Franchini
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | - Iliyan Nikolov Kolev
- Faculty of Pharmacy, Medical University, "Prof. Dr. Paraskev Stoyanov", 84 Tsar Osvoboditel str., Varna, Bulgaria
| | - Georgi Stoyanov Stoyanov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Medical University, "Prof. Dr. Paraskev Stoyanov", 55 Marin Drinov str., Varna, Bulgaria; Faculty of Medicine, Medical University, "Prof. Dr. Paraskev Stoyanov", 55 Marin Drinov str., Varna, Bulgaria
| | - Kameliya Zhechkova Bratoeva
- Faculty of Medicine, Medical University, "Prof. Dr. Paraskev Stoyanov", 55 Marin Drinov str., Varna, Bulgaria
| |
Collapse
|
8
|
Belgamwar A, Khan S, Yeole P. Intranasal chitosan-g-HPβCD nanoparticles of efavirenz for the CNS targeting. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:374-386. [PMID: 28423949 DOI: 10.1080/21691401.2017.1313266] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Incompetence of antiretrovirals (ARV) in complete eradication of HIV from the CNS is the biggest issue in neuro-AIDS treatment. The ineffectiveness is largely due to the poor penetration of ARV. Hence, the present study is attempted to enhance the CNS uptake of efavirenz (EFV) by designing intranasal EFV nanoparticles (EFV-NPs). EFV-NPs were fabricated using chitosan-g-HPβCD by ionic gelation method and optimized using quadratic response surface methodology (RSM) employing two-factor, five-level circumscribed central composite design. NPs containing drug: polymer ratio (1.25:0.79) were spherical with 198 ± 4.4 nm size, 23.28 ± 1.5% drug loading and 38 ± 1.43% entrapment efficiency. NPs showed sustained drug release (99.03 ± 0.30% in 8 h) and followed Fickian diffusion mechanism. It gave 4.76 times greater permeability than plain drug solution through porcine nasal mucosa. Enhanced CNS bioavailability (12.40-fold that of i.v solution) of EFV, high drug-targeting percentage (99.24%) and drug-targeting index (141.3) post-intranasal administration of NPs was observed. These results are corroborated by gamma scintigraphy images, which revealed high CNS uptake. NPs appeared histocompatible with porcine nasal mucosa and non-toxic to L929 cell line. Thus, CS-g-HPβCD served as a potential carrier in developing intranasal mucoadhesive EFV-NPs for the CNS targeting.
Collapse
Affiliation(s)
- Aarti Belgamwar
- a Department of Pharmaceutics, Institute of Pharmaceutical Education and Research , Wardha , Maharashtra , India
| | - Shagufta Khan
- a Department of Pharmaceutics, Institute of Pharmaceutical Education and Research , Wardha , Maharashtra , India
| | - Pramod Yeole
- a Department of Pharmaceutics, Institute of Pharmaceutical Education and Research , Wardha , Maharashtra , India.,b Rashtrasant Tukdoji Maharaj Nagpur University , Nagpur , Maharashtra , India
| |
Collapse
|
9
|
Drug delivery techniques for buccal route: formulation strategies and recent advances in dosage form design. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0281-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Rai VK, Yadav NP, Sinha P, Mishra N, Luqman S, Dwivedi H, Kymonil KM, Saraf SA. Development of cellulosic polymer based gel of novel ternary mixture of miconazole nitrate for buccal delivery. Carbohydr Polym 2014; 103:126-33. [DOI: 10.1016/j.carbpol.2013.12.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/03/2013] [Accepted: 12/07/2013] [Indexed: 11/30/2022]
|
11
|
Velásquez AMA, Francisco AI, Kohatsu AAN, Silva FADJ, Rodrigues DF, Teixeira RGDS, Chiari BG, de Almeida MGJ, Isaac VLB, Vargas MD, Cicarelli RMB. Synthesis and tripanocidal activity of ferrocenyl and benzyl diamines against Trypanosoma brucei and Trypanosoma cruzi. Bioorg Med Chem Lett 2014; 24:1707-10. [PMID: 24630563 DOI: 10.1016/j.bmcl.2014.02.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 11/20/2022]
Abstract
Trypanosoma brucei and Trypanosoma cruzi are the etiologic agents of sleeping sickness and Chagas disease, respectively, two of the 17 preventable tropical infectious diseases (NTD) which have been neglected by governments and organizations working in the health sector, as well as pharmaceutical industries. High toxicity and resistance are problems of the conventional drugs employed against trypanosomiasis, hence the need for the development of new drugs with trypanocidal activity. In this work we have evaluated the trypanocidal activity of a series of N1,N2-dibenzylethane-1,2-diamine hydrochlorides (benzyl diamines) and N1-benzyl,N2-methyferrocenylethane-1,2-diamine hydrochlorides (ferrocenyl diamines) against T. brucei and T. cruzi parasite strains. We show that incorporation of the ferrocenyl group into the benzyl diamines increases the trypanocidal activity. The molecules exhibit potential trypanocidal activity in vitro against all parasite strains. Cytotoxicity assay was also carried out to evaluate the toxicity in HepG2 cells.
Collapse
Affiliation(s)
- Angela Maria Arenas Velásquez
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Rodovia Araraquara-Jaú Km 01-Campus, Araraquara 14.801-902, Brazil; Instituto de Química, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Rua Prof. Francisco Degni, 55, Araraquara 14.800-900, Brazil.
| | - Acácio Ivo Francisco
- Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho-Centro, Niterói 24.020-150, Brazil
| | - Andréa Akiko Nakaima Kohatsu
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Rodovia Araraquara-Jaú Km 01-Campus, Araraquara 14.801-902, Brazil
| | - Flavia Alves de Jesus Silva
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Rodovia Araraquara-Jaú Km 01-Campus, Araraquara 14.801-902, Brazil
| | - Danilo Fernando Rodrigues
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Rodovia Araraquara-Jaú Km 01-Campus, Araraquara 14.801-902, Brazil; Instituto de Química, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Rua Prof. Francisco Degni, 55, Araraquara 14.800-900, Brazil
| | | | - Bruna Galdorfini Chiari
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Rodovia Araraquara-Jaú Km 01-Campus, Araraquara 14.801-902, Brazil
| | - Maria Gabriela José de Almeida
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Rodovia Araraquara-Jaú Km 01-Campus, Araraquara 14.801-902, Brazil
| | - Vera Lucia Borges Isaac
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Rodovia Araraquara-Jaú Km 01-Campus, Araraquara 14.801-902, Brazil
| | - Maria D Vargas
- Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho-Centro, Niterói 24.020-150, Brazil
| | - Regina Maria Barretto Cicarelli
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Rodovia Araraquara-Jaú Km 01-Campus, Araraquara 14.801-902, Brazil.
| |
Collapse
|