1
|
Crispino R, Lagreca E, Procopio A, D'Auria R, Corrado B, La Manna S, Onesto V, Di Natale C. Advanced polymeric systems for colon drug delivery: from experimental models to market applications. SOFT MATTER 2025; 21:792-818. [PMID: 39801430 DOI: 10.1039/d4sm01222d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, i.e., Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria (e.g., colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred. However, these systems are primarily delivered orally, so the carrier must go through the whole gastrointestinal tract, where it encounters significant pH fluctuations, different mucus layers, several enzymes, and a long transit time. For this reason, various approaches have been explored and evaluated, especially using pH-responsive and time-dependent systems. This review provides an overview of the contemporary methodologies employed in orally administered nano- and microparticles for colon delivery, encompassing both in vivo and in vitro investigations. It evaluates their strengths, weaknesses, constraints, and potential enhancements, leveraging mathematical and microfluidic models. Furthermore, it focuses explicitly on systems that have already reached the market and are presently employed in treating severe colon diseases.
Collapse
Affiliation(s)
- R Crispino
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy
- Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy.
| | - E Lagreca
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy
| | - A Procopio
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - R D'Auria
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy
| | - B Corrado
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - S La Manna
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy.
| | - V Onesto
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, Italy
| | - C Di Natale
- Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy.
| |
Collapse
|
2
|
Singh E, Osmani RAM, Banerjee R, Abu Lila AS, Moin A, Almansour K, Arab HH, Alotaibi HF, Khafagy ES. Poly ε-Caprolactone Nanoparticles for Sustained Intra-Articular Immune Modulation in Adjuvant-Induced Arthritis Rodent Model. Pharmaceutics 2022; 14:519. [PMID: 35335895 PMCID: PMC8953799 DOI: 10.3390/pharmaceutics14030519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder with synovitis and articular pathology as its primary expositions. Leflunomide (Lfd) is an anti-rheumatic drug that is effective in the treatment of RA, but displays severe side effects upon prolonged systemic administration. Local therapy might represent a promising strategy to treat rheumatoid arthritis without eliciting systemic adverse effects. In this study, leflunomide-loaded poly(ε-caprolactone) nanoparticles (Lfd-NPs) were prepared and assessed as a local drug delivery system capable of alleviating RA-associated inflammation. Lfd-NPs were optimized using the Quality by Design (QbD) approach, applying a 32 full factorial design. In vitro drug release from NPs was examined in simulated synovial fluid. In addition, the in vivo efficacy of Lfd-NPs was evaluated in the Adjuvant Induced Arthritis (AIA) rodent model. Sustained drug release in simulated synovial fluid was observed for up to 168 h. A gradual reduction in paw volume and knee diameter was observed over the course of treatment, indicating the regression of the disease. In addition, significant reductions in serum proinflammatory markers and cytokines, including the C-reactive protein (CRP), rheumatoid factor (RF), TNF-α, IL1-β, and IL-6, were verified upon treatment with Lfd-NPs, suggesting the modulation of immune responses at the pathological site. Most importantly, no remarkable signs of toxicity were observed in Lfd-NP-treated animals. Collectively, intra-articularly administered Lfd-NPs might represent a potential therapeutic alternative to systemically administered drugs for the treatment of rheumatoid arthritis, without eliciting systemic adverse effects.
Collapse
Affiliation(s)
- Ekta Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Amr Selim Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (K.A.)
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (K.A.)
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (K.A.)
| | - Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41552, Egypt
| |
Collapse
|
3
|
Core/shell poly(ethylene oxide)/Eudragit fibers for site-specific release. Int J Pharm 2017; 523:376-385. [PMID: 28344174 DOI: 10.1016/j.ijpharm.2017.03.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 11/22/2022]
Abstract
Electrospinning was used to prepare core/shell fibers containing the active pharmaceutical ingredients indomethacin (IMC) or mebeverine hydrochloride (MB-HCl). The shell of the fibers was fabricated from the pH sensitive Eudragit S100 polymer, while the drug-loaded core was based on the mucoadhesive poly(ethylene oxide) (PEO). Three different drug loadings (from 9 to 23% (w/w) of the core mass) were prepared, and for MB-HCl two different molecular weights of PEO were explored. The resultant fibers generally comprise smooth cylinders, although in some cases defects such as surface particles or flattened or merged fibers were visible. Transmission electron microscopy showed all the systems to have clear core and shell compartments. The drugs are present in the amorphous physical form in the fibers. Dissolution tests found that the fibers can effectively prevent release in acidic conditions representative of the stomach, particularly for the acidic indomethacin. After transfer to a pH 7.4 medium, sustained release over between 6 and 22h is observed. Given the mucoadhesive nature of the PEO core, after dissolution of the shell the fibers will be able to adhere to the walls of the intestinal tract and give sustained local drug release. This renders them promising for the treatment of conditions such as irritable bowel disease and colon cancer.
Collapse
|
4
|
El-Say KM. Maximizing the encapsulation efficiency and the bioavailability of controlled-release cetirizine microspheres using Draper-Lin small composite design. Drug Des Devel Ther 2016; 10:825-39. [PMID: 26966353 PMCID: PMC4771436 DOI: 10.2147/dddt.s101900] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
This study was aimed at developing a controlled-release cetirizine hydrochloride (CTZ)-loaded polymethacrylate microsphere by optimization technique using software-based response surface methodology. The emulsion solvent evaporation method was utilized in the preparation of microspheres. Four process variables were selected, namely, Eudragit RLPO loading percentage in total polymer, the emulsifier hydrophilic lipophilic balance (HLB), the antitacking percentage, and the dispersed phase volume. The desired responses were particle size, angle of repose, production yield, encapsulation efficiency, loading capacity, initial drug release, and the time for 85% of drug release from the microspheres. Optimization was carried out by fitting the experimental data to the software program (Statgraphics Centurion XV). Moreover, 18 batches were subjected to various characterization tests required for the production of dosage form. The pharmacokinetic parameters were evaluated after the oral administration of 10 mg CTZ in both optimized formulation and commercial product on healthy human volunteers using a double-blind, randomized, cross-over design. The optimized formulation showed satisfactory yield (84.43%) and drug encapsulation efficiency (87.1%). Microspheres were of spherical shape, smooth surface, and good flowability with an average size of 142.3 μm. The developed optimized batch of microspheres ensured 28.87% initial release after 2 hours, and the release of CTZ extended for >12 hours. In addition, the relative bioavailability of the optimized formulation was 165.5% with respect to the marketed CTZ tablets indicating a significant enhancement of CTZ bioavailability. Thus, there is an expectation to decrease the administered dose and the frequency of administration, and subsequently minimize the adverse effects that are faced by the patient during the treatment.
Collapse
Affiliation(s)
- Khalid Mohamed El-Say
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Zhang L, Sang Y, Feng J, Li Z, Zhao A. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery. J Drug Target 2016; 24:579-89. [PMID: 26766303 DOI: 10.3109/1061186x.2015.1128941] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oral colon-targeted drug delivery has attracted many researchers because of its distinct advantages of increasing the bioavailability of the drug at the target site and reducing the side effects. Polysaccharides that are precisely activated by the physiological environment of the colon hold greater promise for colon targeting. Considerable research efforts have been directed towards developing polysaccharide-based micro/nanocarriers. Types of polysaccharides for colon targeting and in vitro/in vivo assessments of polysaccharide-based carriers for oral colon-targeted drug delivery are summarised. Polysaccharide-based microspheres have gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon (colon cancer, inflammatory bowel disease (IBD), amoebiasis and irritable bowel syndrome (IBS)), but also for it's potential for the delivery of anti-rheumatoid arthritis and anti-chronic stable angina drugs. Besides, Polysaccharide-based micro/nanocarriers such as microbeads, microcapsules, microparticles, nanoparticles, nanogels and nanospheres are also introduced in this review.
Collapse
Affiliation(s)
- Lin Zhang
- a Shandong Academy of Pharmaceutical Sciences , Jinan , PR China
| | - Yuan Sang
- b Weihai Institute for Drug Control , Weihai , PR China
| | - Jing Feng
- a Shandong Academy of Pharmaceutical Sciences , Jinan , PR China
| | - Zhaoming Li
- a Shandong Academy of Pharmaceutical Sciences , Jinan , PR China
| | - Aili Zhao
- a Shandong Academy of Pharmaceutical Sciences , Jinan , PR China
| |
Collapse
|
6
|
A trial for the design and optimization of pH-sensitive microparticles for intestinal delivery of cinnarizine. Drug Deliv Transl Res 2016; 6:195-209. [DOI: 10.1007/s13346-015-0277-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Illangakoon UE, Nazir T, Williams GR, Chatterton NP. Mebeverine‐Loaded Electrospun Nanofibers: Physicochemical Characterization and Dissolution Studies. J Pharm Sci 2014; 103:283-92. [DOI: 10.1002/jps.23759] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 01/19/2023]
|
8
|
Vats A, Pathak K. Exploiting microspheres as a therapeutic proficient doer for colon delivery: a review. Expert Opin Drug Deliv 2013; 10:545-57. [DOI: 10.1517/17425247.2013.759937] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Madhavi M, Madhavi K, Jithan AV. Preparation and in vitro/in vivo characterization of curcumin microspheres intended to treat colon cancer. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2012; 4:164-71. [PMID: 22557928 PMCID: PMC3341721 DOI: 10.4103/0975-7406.94825] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 04/25/2011] [Accepted: 05/15/2011] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The objective of the present investigation was to prepare colon targeted curcumin microspheres using Eudragit S100 and evaluate the same for in vitro/in vivo properties. MATERIALS AND METHODS A "O/O solvent evaporation" technique was used in the preparation of microspheres. The influence of various process variables including stirring speed, drug:polymer ratio and percentage of emulsifier on the fabrication were investigated and the formulation was optimized. Prepared microspheres were evaluated for in vitro and in vivo properties. Surface morphology, particle size, percentage drug entrapment, percentage yield, drug polymer interaction, in vitro drug release in simulated gastrointestinal transit conditions and stability were the in vitro parameters investigated. Using an optimized formulation, drug release into the systemic circulation and organ distribution were investigated as in vivo parameters. In vivo parameters were estimated in male albino rats. RESULTS Curcumin microspheres of Eudragit S100 were successfully prepared using o/o solvent evaporation method. Microspheres prepared using 1:2 drug:polymer ratio, with a stirring speed of 1000 rpm, and using 1.0% w/v concentration of emulsifying agent was selected as an optimized formulation. The release studies with optimized formulation demonstrated that aqueous solubility of curcumin was enhanced by 8 times with the formulation. FTIR studies demonstrated no change in drug characteristics upon microsphere fabrication. The enhancement in solubility is thus due to the increase in the surface area of the drug substance and not due to a change of drug to a different physical state. This was further confirmed by scanning electron microsphere pictures. Drug release followed Korsmeyer and Peppas release model. Accelerated stability studies indicated that the drug is stable in the formulation for a period of atleast 14 weeks at room temperature. In vivo studies demonstrated a sustained drug release into the systemic circulation after oral administration of the formulation. Further, colon target was affectively achieved using the optimized formulation. Eudragit microspheres delivered most of their drug load (79.0%) to the colon, whereas with plain drug suspension only 28.0% of the total dose reached the target site. CONCLUSION This study successfully developed curcumin microspheres that can be used effectively in the treatment of the colon cancer.
Collapse
Affiliation(s)
- M. Madhavi
- Priyadarshini Yashodhara College of Pharmacy, Chandrapur, Maharashtra, India
| | - K. Madhavi
- Care College of Pharmacy, Warangal, Andhra Pradesh, India
| | - A. V. Jithan
- Mother Teresa College of Pharmacy, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
10
|
El-Bary AA, Aboelwafa AA, Al Sharabi IM. Influence of some formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres. AAPS PharmSciTech 2012; 13:75-84. [PMID: 22130789 PMCID: PMC3299443 DOI: 10.1208/s12249-011-9721-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to understand the influence of different formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres prepared by O/O emulsion solvent evaporation method, employing pH-dependent Eudragit S and hydrophobic pH-independent ethylcellulose polymers. Formulation variables studied included concentration of Eudragit S in the internal phase and the ratios between; internal to external phase, drug to Eudragit S and Eudragit S to ethylcellulose to mesalamine. Prepared microspheres were evaluated by carrying out in vitro release studies and determination of particle size, production yield, and encapsulation efficiency. In addition, morphology of microspheres was examined using optical and scanning electron microscopy. Emulsion solvent evaporation method was found to be sensitive to the studied formulation variables. Particle size and encapsulation efficiency increased by increasing Eudragit S concentration in the internal phase, ratio of internal to external phase, and ratio of Eudragit S to the drug. Employing Eudragit S alone in preparation of the microspheres is only successful in forming acid-resistant microspheres with pulsatile release pattern at high pH. Eudragit S and ethylcellulose blend microspheres were able to control release under acidic condition and to extend drug release at high pH. The stability studies carried out at 40°C/75% RH for 6 months proved the stability of the optimized formulation. From the results of this investigation, microencapsulation of mesalamine in microspheres using blend of Eudragit S and ethylcellulose could constitute a promising approach for site-specific and controlled delivery of drug in colon.
Collapse
Affiliation(s)
- Ahmed Abd El-Bary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-aini Street, Cairo, 11562 Egypt
| | - Ahmed A. Aboelwafa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-aini Street, Cairo, 11562 Egypt
| | - Ibrahim M. Al Sharabi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-aini Street, Cairo, 11562 Egypt
| |
Collapse
|
11
|
Galbiati A, Tabolacci C, Morozzo Della Rocca B, Mattioli P, Beninati S, Paradossi G, Desideri A. Targeting Tumor Cells through Chitosan-Folate Modified Microcapsules Loaded with Camptothecin. Bioconjug Chem 2011; 22:1066-72. [DOI: 10.1021/bc100546s] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Cassidy CM, Tunney MM, Caldwell DL, Andrews GP, Donnelly RF. Development of novel oral formulations prepared via hot melt extrusion for targeted delivery of photosensitizer to the colon. Photochem Photobiol 2011; 87:867-76. [PMID: 21375536 DOI: 10.1111/j.1751-1097.2011.00915.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colon-residing bacteria, such as vancomycin-resistant Enterococcus faecalis and Bacteroides fragilis, can cause a range of serious clinical infections. Photodynamic antimicrobial chemotherapy (PACT) may be a novel treatment option for these multidrug resistant organisms. The aim of this study was to formulate a Eudragit®-based drug delivery system, via hot melt extrusion (HME), for targeting colonic release of photosensitizer. The susceptibility of E. faecalis and B. fragilis to PACT mediated by methylene blue (MB), meso-tetra(N-methyl-4-pyridyl)porphine tetra-tosylate (TMP), or 5-aminolevulinic acid hexyl-ester (h-ALA) was determined, with tetrachlorodecaoxide (TCDO), an oxygen-releasing compound, added in some studies. Results show that, for MB, an average of 30% of the total drug load was released over a 6-h period. For TMP and h-ALA, these values were 50% and 16% respectively. No drug was released in the acidic media. Levels of E. faecalis and B. fragilis were reduced by up to 4.67 and 7.73 logs, respectively, on PACT exposure under anaerobic conditions, with increased kill associated with TCDO. With these formulations, photosensitizer release could potentially be targeted to the colon, and colon-residing pathogens killed by PACT. TCDO could be used in vivo to generate oxygen, which could significantly impact on the success of PACT in the clinic.
Collapse
|