1
|
Tu L, Fan Y, Deng Y, Hu L, Sun H, Zheng B, Lu D, Guo C, Zhou L. Production and Anti-Inflammatory Performance of PVA Hydrogels Loaded with Curcumin Encapsulated in Octenyl Succinic Anhydride Modified Schizophyllan as Wound Dressings. Molecules 2023; 28:molecules28031321. [PMID: 36770985 PMCID: PMC9921521 DOI: 10.3390/molecules28031321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Amphiphilic polysaccharides can be used as wall materials and applied to encapsulate hydrophobic active chemicals; moreover, there is significant demand for novel medical high-molecular-weight materials with various functions. In order to prepare amphiphilic schizophyllan (SPG), octenyl succinic anhydride (OSA) was chosen to synthesize OSA-modified schizophyllan (OSSPG) using an esterified reaction. The modification of OSSPG was demonstrated through FT-IR and thermal analysis. Moreover, it was found that OSSPG has a better capacity for loading curcumin, and the loading amount was 20 μg/mg, which was 2.6 times higher than that of SPG. In addition, a hydrogel made up of PVA, borax, and C-OSSPG (OSSPG loaded with curcumin) was prepared by means of the one-pot method, based on the biological effects of curcumin and the immune-activating properties of SPG. The mechanical properties and biological activity of the hydrogel were investigated. The experimental results show that the dynamic cross-linking of PVA and borax provided the C-OSSPG/BP hydrogel dressing with exceptional self-healing properties, and it was discovered that the C-OSSPG content increased the hydrogel's swelling and moisturizing properties. In fibroblast cell tests, the cells treated with hydrogel had survival rates of 80% or above. Furthermore, a hydrogel containing C-OSSPG could effectively promote cell migration. Due to the excellent anti-inflammatory properties of curcumin, the hydrogel also significantly reduces the generation of inflammatory factors, such as TNF-α and IL-6, and thus has a potential application as a wound dressing medicinal material.
Collapse
Affiliation(s)
- Lingyun Tu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yifeng Fan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yongfei Deng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lu Hu
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
| | - Huaiqing Sun
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Dengjun Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| | - Chaowan Guo
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| | - Lin Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| |
Collapse
|
2
|
Smirnova E, Moniruzzaman M, Chin S, Sureshbabu A, Karthikeyan A, Do K, Min T. A Review of the Role of Curcumin in Metal Induced Toxicity. Antioxidants (Basel) 2023; 12:antiox12020243. [PMID: 36829803 PMCID: PMC9952547 DOI: 10.3390/antiox12020243] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Metal toxicity poses a potential global threat to the environment and living beings. Their numerous agricultural, medical, industrial, domestic, and technological applications result in widespread distribution in the environment which raises concern on the potential effects of metals in terms of health hazards and environmental pollution. Chelation therapy has been the preferred medical treatment for metal poisoning. The chelating agent bounds metal ions to form complex cyclic structures known as 'chelates' to intensify their excretion from the body. The main disadvantage of synthetic chelators is that the chelation process removes vital nutrients along with toxic metals. Natural compounds are widely available, economical, and have minimal adverse effects compared to classical chelators. Herbal preparations can bind to the metal, reduce its absorption in the intestines, and facilitate excretion from the body. Curcumin, a bioactive substance in turmeric, is widely used as a dietary supplement. Most studies have shown that curcumin protects against metal-induced lipid peroxidation and mitigates adverse effects on the antioxidant system. This review article provides an analysis to show that curcumin imparts promising metal toxicity-ameliorative effects that are related to its intrinsic antioxidant activity.
Collapse
Affiliation(s)
- Elena Smirnova
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (M.M.); (T.M.)
| | - Sungyeon Chin
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Anjana Sureshbabu
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoungtag Do
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (M.M.); (T.M.)
| |
Collapse
|
3
|
Wang YH, Long HP, Zhang SX, Liu J, Zhao HQ, Yi J, Linga J. Network pharmacology-based and pharmacological evaluation of the effects of Curcumae Radix on cerebral ischemia–Reperfusion injury. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2023. [DOI: 10.4103/2311-8571.370154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
4
|
The Potential use of a Curcumin-Piperine Combination as an Antimalarial Agent: A Systematic Review. J Trop Med 2021; 2021:9135617. [PMID: 34671402 PMCID: PMC8523290 DOI: 10.1155/2021/9135617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Malaria remains a significant global health problem, but the development of effective antimalarial drugs is challenging due to the parasite's complex life cycle and lack of knowledge about the critical specific stages. Medicinal plants have been investigated as adjuvant therapy for malaria, so this systematic review summarizes 46 primary articles published until December 2020 that discuss curcumin and piperine as antimalarial agents. The selected articles discussed their antioxidant, anti-inflammatory, and antiapoptosis properties, as well as their mechanism of action against Plasmodium species. Curcumin is a potent antioxidant, damages parasite DNA, and may promote an immune response against Plasmodium by increasing reactive oxygen species (ROS), while piperine is also a potent antioxidant that potentiates the effects of curcumin. Hence, combining these compounds is likely to have the same effect as chloroquine, that is, attenuate and restrict parasite development, thereby reducing parasitemia and increasing host survival. This systematic review presents new information regarding the development of a curcumin-piperine combination for future malaria therapy.
Collapse
|
5
|
Gu Y, Xia H, Chen X, Li J. Curcumin Nanoparticles Attenuate Lipotoxic Injury in Cardiomyocytes Through Autophagy and Endoplasmic Reticulum Stress Signaling Pathways. Front Pharmacol 2021; 12:571482. [PMID: 34456712 PMCID: PMC8386169 DOI: 10.3389/fphar.2021.571482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022] Open
Abstract
Although curcumin (CUR) has many advantages, its hydrophobicity and instability limit its application. In this study, the anti-lipotoxic injury activity of CUR-loaded nanoparticles (CUR-NPs) and the corresponding mechanism were examined in palmitate (PA)-treated cardiomyocytes. An amphiphilic copolymer was selected as the vehicle material, and CUR-NPs with suitable sizes were prepared under optimized conditions. Cellular uptake was examined by confocal laser scanning microscopy, and cell proliferation inhibition rate was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra bromide (MTT) assay. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect cell apoptosis. The protein expression was detected by western blot. Exposure to PA reduces the proliferation of cardiomyocytes, but this effect was strongly reversed by CUR-NPs. In addition, our data showed that CUR-NPs strongly inhibited cell apoptosis in PA-treated cardiomyocytes. Furthermore, CUR-NPs remarkably increased the expression of LC3-II, as well as inhibited the expression of p-PERK, p-eIF2α, and ATF4 in PA-treated cardiomyocytes. Salubrinal (an eIF2α inhibitor) blocked the protective effect of CUR-NPs against PA-induced cardiomyocyte injury. Our results suggested that CUR-NPs can activated the autophagy pathway and protect myocardial cells from apoptosis, and these effects may be mediated by the eIF2α-related endoplasmic reticulum stress signaling pathway.
Collapse
Affiliation(s)
- Yue Gu
- Department of Reparatory and Critical Care Medicine, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Huan Xia
- Department of Reparatory and Critical Care Medicine, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Xiao Chen
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Jing Li
- Medical College, Huzhou University, Huzhou, China
| |
Collapse
|
6
|
Abstract
OBJECTIVE The burden of the management of problematic skin wounds characterised by a compromised skin barrier is growing rapidly. Almost six million patients are affected in the US alone, with an estimated market of $25 billion annually. There is an urgent requirement for efficient mechanism-based treatments and more efficacious drug delivery systems. Novel strategies are needed for faster healing by reducing infection, moisturising the wound, stimulating the healing mechanisms, speeding up wound closure and reducing scar formation. METHODS A systematic review of qualitative studies was conducted on the recent perspectives of nanotechnology in burn wounds management. Pubmed, Scopus, EMBASE, CINAHL and PsychINFO databases were all systematically searched. Authors independently rated the reporting of the qualitative studies included. A comprehensive literature search was conducted covering various resources up to 2018-2019. Traditional techniques aim to simply cover the wound without playing any active role in wound healing. However, nanotechnology-based solutions are being used to create multipurpose biomaterials, not only for regeneration and repair, but also for on-demand delivery of specific molecules. The chronic nature and associated complications of nonhealing wounds have led to the emergence of nanotechnology-based therapies that aim at facilitating the healing process and ultimately repairing the injured tissue. CONCLUSION Nanotechnology-based therapy is in the forefront of next-generation therapy that is able to advance wound healing of hard-to-heal wounds. In this review, we will highlight the developed nanotechnology-based therapeutic agents and assess the viability and efficacy of each treatment. Herein we will explore the unmet needs and future directions of current technologies, while discussing promising strategies that can advance the wound-healing field.
Collapse
Affiliation(s)
- Ruan Na
- Orthopedics Department, Affiliated Tongji Hospital of Huazhong University of Science and Technology, Wuhan City, Hubei Province, 430030, China
| | - Tian Wei
- Department of Biomedical Engineering
| |
Collapse
|
7
|
Immunomodulatory and Anti-Inflammatory Potential of Curcumin for the Treatment of Allergic Asthma: Effects on Expression Levels of Pro-inflammatory Cytokines and Aquaporins. Inflammation 2020; 42:2037-2047. [PMID: 31407145 DOI: 10.1007/s10753-019-01066-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Curcumin is well known for possessing anti-inflammatory properties and for its beneficial effects in the treatment of asthma. Current study investigates the immunomodulatory and anti-inflammatory effects of curcumin using mouse model of ovalbumin-induced allergic asthma. BALB/c mice were immunized with ovalbumin on day 0 and 14 to induce allergic asthma. Animals were treated with two different doses of curcumin (20 mg/kg and 100 mg/kg) and methylprednisolone from day 21 to 28. Mice were also daily challenged intranasally with ovalbumin during treatment period, and all groups were sacrificed at day 28. Histopathological examination showed amelioration of allergic asthma in treated groups as evident by the attenuation of infiltration of inflammatory cells, goblet cell hyperplasia, alveolar thickening, and edema and vascular congestion. Curcumin significantly reduced total and differential leukocyte counts in both bronchoalveolar lavage fluid and blood. Reverse transcription polymerase chain reaction analysis showed significantly suppressed mRNA expression levels of IL-4 and IL-5 (pro-inflammatory cytokines), TNF-α, TGF-β (pro-fibrotic cytokines), eotaxin (chemokine), and heat shock protein 70 (marker of airway obstruction) in treated groups. Attenuation of these pro-inflammatory markers might have led to the suppression of airway inflammation. The expression levels of aquaporin-1 (AQP) and AQP-5 were found significantly elevated in experimental groups which might be responsible for reduction of pulmonary edema. In conclusion, curcumin significantly ameliorated allergic asthma. The anti-asthmatic effect might be attributed to the suppression of pro-inflammatory cytokines, and elevation of aquaporin expression levels, suggesting further studies and clinical trials to establish its candidature in the treatment of allergic asthma.
Collapse
|
8
|
Abbas M, Hussain T, Arshad M, Ansari AR, Irshad A, Nisar J, Hussain F, Masood N, Nazir A, Iqbal M. Wound healing potential of curcumin cross-linked chitosan/polyvinyl alcohol. Int J Biol Macromol 2019; 140:871-876. [PMID: 31437503 DOI: 10.1016/j.ijbiomac.2019.08.153] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/17/2019] [Accepted: 08/17/2019] [Indexed: 01/25/2023]
Abstract
This study focusses on antibacterial properties and wound healing potential of curcumin cross-linked with chitosan-PVA membranes. The crude curcumin was extracted from the rhizome of (Curcumin longa) and chitosan-PVA 80 was also prepared separately. The synergistic potential 10, 20 and 30 mg of curcumin alone and in combination with chitosan-PVA was determined. The antibacterial, scavenging potential of free radical, total phenolic and total flavonoids contents were documented through spectrophotometric methods. Finally, the wound healing potential was tested on experimental animal (rabbits). Rabbits were divided into different groups; untreated (control), treated with 10, 20 and 30 mg of curcumin and its combination with chitosan-PVA80. Chitosan-PVA exhibited significant antibacterial property against bacterial pathogens. Wound healing trials on 2nd degree burns showed chitosan as substantial wound healing agent for wound bandages. Results have shown that chitosan wound gauzes augmented the granule and fibrous connective tissues formation.
Collapse
Affiliation(s)
- Mazhar Abbas
- Section of Biochemistry, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Tariq Hussain
- Section of Pharmacology and Toxicology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Muhammad Arshad
- Section of Biochemistry, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Asma Irshad
- Centre of Excellence in Molecular Biology, University of Punjab, Pakistan
| | - Jan Nisar
- National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Fida Hussain
- Department of Botany, Qurtuba University of Science and Information Technology, Peshawar, KPK, Pakistan; Department of Botany, Islamia College Peshawar, Pakistan
| | - Nasir Masood
- Department of Environmental Sciences, COMSATS University Islamabad, Sub Campus Vehari, Punjab, Pakistan
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan; Memorial University Grenfell Campus, Corner Brook Newfoundland and Labrador, Canada.
| | - Munawar Iqbal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
9
|
Marmitt DJ, Bitencourt S, Silva ADCE, Rempel C, Goettert MI. The healing properties of medicinal plants used in the Brazilian public health system: a systematic review. J Wound Care 2018; 27:S4-S13. [DOI: 10.12968/jowc.2018.27.sup6.s4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Diorge Jônatas Marmitt
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | - Shanna Bitencourt
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | | | - Claudete Rempel
- Programa de Pós-graduação em Ambiente e Desenvolvimento, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | - Márcia Inês Goettert
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| |
Collapse
|
10
|
Huang X, Li LD, Lyu GM, Shen BY, Han YF, Shi JL, Teng JL, Feng L, Si SY, Wu JH, Liu YJ, Sun LD, Yan CH. Chitosan-coated cerium oxide nanocubes accelerate cutaneous wound healing by curtailing persistent inflammation. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00707h] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitosan-coated ceria nanocubes accelerate cutaneous wound healing by curtailing persistent inflammation with powerful anti-inflammation and anti-oxidation properties.
Collapse
|
11
|
Mahibalan S, Stephen M, Nethran RT, Khan R, Begum S. Dermal wound healing potency of single alkaloid (betaine) versus standardized crude alkaloid enriched-ointment of Evolvulus alsinoides. PHARMACEUTICAL BIOLOGY 2016; 54:2851-2856. [PMID: 27267555 DOI: 10.1080/13880209.2016.1185636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/13/2016] [Accepted: 04/29/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Evolvulus alsinoides Linn. (Convolvulaceae), well known as shankhpushpi in Ayurvedic text, is traditionally used for several healing purposes. OBJECTIVE A comparative evaluation of dermal wound healing potential of acidic and basic alkaloid enriched-ointment (AAO and BAO) of aerial parts of E. alsinoides versus pure alkaloid, betaine (BEO), was undertaken. MATERIAL AND METHODS The effect of topical application (50 mg/animal/day) of AAO-1%, AAO-2%, BAO-1%, BAO-2%, BEO-0.5% and BEO-1% was assessed through excision (14 days) and incision (10 days) models on rats. The percentage wound contraction, total protein content, and breaking strengths were determined followed by histopathological studies. RESULTS AND DISCUSSION The total alkaloid in acidic and basic alkaloid enriched fractions was found to be 0.1114 and 0.1134 μg/mL, respectively. Thus, 0.1528, 0.3056, 0.1380 and 0.2459 μg of total alkaloid were estimated to be present in AAO-1%, AAO-2%, BAO-1% and BAO-2%, respectively. AAO and BAO promoted wound healing activity significantly in both the models. Higher rate of wound contraction (p < 0.001) with significant increase in protein content in the treatment groups (from 2.32 to 2.55) demonstrated stimulation of cellular proliferation and epithelization, which was further supported by histopathological reports. High skin breaking strength (mean value 393 in control was increased to the range of 535-572 in treated groups) proved a significant (p < 0.001) wound healing potential of E. alsinoides. Early dermal and epidermal regeneration in drug-treated groups also confirmed the positive effect. CONCLUSION Observation of higher healing power of alkaloid enriched-ointment compared with single alkaloid ointment corroborated the synergy mechanism.
Collapse
Affiliation(s)
- Senthi Mahibalan
- a Department of Pharmacy , Birla Institute of Technology and Science-Pilani Hyderabad Campus , Shameerpet , Telangana , India
| | - Maria Stephen
- a Department of Pharmacy , Birla Institute of Technology and Science-Pilani Hyderabad Campus , Shameerpet , Telangana , India
| | - Rohan Thekkedathu Nethran
- a Department of Pharmacy , Birla Institute of Technology and Science-Pilani Hyderabad Campus , Shameerpet , Telangana , India
| | - Rukaiyya Khan
- a Department of Pharmacy , Birla Institute of Technology and Science-Pilani Hyderabad Campus , Shameerpet , Telangana , India
| | - Sajeli Begum
- a Department of Pharmacy , Birla Institute of Technology and Science-Pilani Hyderabad Campus , Shameerpet , Telangana , India
| |
Collapse
|
12
|
Lipid vesicles loading aluminum phthalocyanine chloride: Formulation properties and disaggregation upon intracellular delivery. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:240-7. [DOI: 10.1016/j.jphotobiol.2016.03.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/25/2023]
|