1
|
Guo L, Ruan Q, Ma D, Wen J. Revealing quorum-sensing networks in Pseudomonas aeruginosa infections through internal and external signals to prevent new resistance trends. Microbiol Res 2024; 289:127915. [PMID: 39342746 DOI: 10.1016/j.micres.2024.127915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
In the context of growing antibiotic resistance in bacteria, the quorum-sensing (QS) system of Pseudomonas aeruginosa (P. aeruginosa) has become a target for new therapeutic strategies. QS is a crucial communication process and an essential pathogenic mechanism. This comprehensive review explores the critical role of QS in the pathogenesis of P. aeruginosa infections, including lung, burn, bloodstream, gastrointestinal, corneal, and urinary tract infections. In addition, this review delves into the complexity of the bacterial QS communication network and highlights the intricate mechanisms underlying these pathological processes. Notably, in addition to the four main QS systems, bacterial QS can interact with various external and internal signaling networks, such as host environments and nutrients in the external microbiome, as well as internal virulence regulation systems within bacteria. These elements can significantly influence the behavior and virulence of microbial communities. Therefore, this review reveals that inhibitors targeting singular QS pathways may inadvertently promote virulence in other pathways, leading to new trends in drug resistance. In response to evolving resistance challenges, this study proposes more cautious treatment strategies, including multitarget interventions and combination therapies, aimed at combating the escalating issue of resistance.
Collapse
Affiliation(s)
- Li Guo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiao Ruan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jun Wen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
El Husseini N, Carter JA, Lee VT. Urinary tract infections and catheter-associated urinary tract infections caused by Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2024:e0006622. [PMID: 39431861 DOI: 10.1128/mmbr.00066-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
SUMMARYUrinary tract infection (UTI) is one of the most common infections in otherwise healthy individuals. UTI is also common in healthcare settings where patients often require urinary catheters to alleviate urinary retention. The placement of a urinary catheter often leads to catheter-associated urinary tract infection (CAUTI) caused by a broad range of opportunistic pathogens, commonly referred to as ESKAPE (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter) pathogens. Our understanding of CAUTI is complicated by the differences in pathogens, in initial microbial load, changes that occur due to the duration of catheterization, and the relationship between infection (colonization) and disease symptoms. To advance our understanding of CAUTI, we reviewed UTI and CAUTI caused by Pseudomonas aeruginosa which is unique in that it is not commonly found associated with human microbiomes. For this reason, the ability of P. aeruginosa to cause UTI and CAUTI requires the introduction of the bacteria to the bladder from catheterization. Once in the host, the virulence factors used by P. aeruginosa in these infections remain an area of ongoing research. In this review, we will discuss studies that focus on P. aeruginosa UTI and CAUTI to better understand the infection dynamics and outcome in clinical settings, virulence factors associated with P. aeruginosa isolated from the urinary tract, and animal studies to test which bacterial factors are required for this infection. Understanding how P. aeruginosa can cause UTI and CAUTI can provide an understanding of how these infections initiate and progress and may provide possible strategies to limit these infections.
Collapse
Affiliation(s)
- Nour El Husseini
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| | - Jared A Carter
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland, USA
| |
Collapse
|
3
|
Qais FA, Ahmad I, Husain FM, Arshad M, Khan A, Adil M. Umbelliferone modulates the quorum sensing and biofilm of Gram - ve bacteria: in vitro and in silico investigations. J Biomol Struct Dyn 2024; 42:5827-5840. [PMID: 37394824 DOI: 10.1080/07391102.2023.2229454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
In last two decades, the world has seen an exponential increase in the antimicrobial resistance (AMR), making the issue a serious threat to human health. The mortality caused by AMR is one of the leading causes of human death worldwide. Till the end of the twentieth century, a tremendous success in the discovery of new antibiotics was seen, but in last two decades, there is negligible progress in this direction. The increase in AMR combined with slow progress of antibiotic drug discovery has created an urgent demand to search for newer methods of intervention to combat infectious diseases. One of such approach is to look for biofilm and quorum sensing (QS) inhibitors. Plants are excellent source of wide class compounds that can be harnessed to look for the compounds with such properties. This study proves a broad-spectrum biofilm and QS inhibitory potential of umbelliferone. More than 85% reduction in violacein production Chromobacterium violaceum 12472 was found. All tested virulent traits of Pseudomonas aeruginosa PAO1 and Serratia marcescens MTCC 97 were remarkably inhibited that ranged from 56.62% to 86.24%. Umbelliferone also successfully prevented the biofilm of test bacteria at least by 67.68%. Umbelliferone interacted at the active site of many proteins of QS circuit, which led to the mitigation of virulent traits. The stable nature of complexes of umbelliferone with proteins further strengthens in vitro results. After examining the toxicological profile and other drug-like properties, umbelliferone could be potentially developed as new drug to target the infections caused by Gram - ve bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | | - Mohammed Arshad
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, KSA
| | - Altaf Khan
- College of Pharmacy, Department of Pharmacology, Central Laboratory, King Saud University, Riyadh, KSA
| | - Mohd Adil
- Department of Environmental Sciences, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
4
|
Qais FA, Khan MS, Ahmad I, Husain FM, Arshad M, Khan A, Adil M. Modulation of quorum sensing and biofilm of Gram-negative bacterial pathogens by Cinnamomum zeylanicum L. Microsc Res Tech 2024; 87:42-52. [PMID: 37660303 DOI: 10.1002/jemt.24410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
The development of antibiotic resistant microbial pathogens has become a global health threat and a major concern in modern medicine. The problem of antimicrobial resistance (AMR) has majorly arisen due to sub-judicious use of antibiotics in health care and livestock industry. A slow progress has been made in last two decades in discovery of new antibiotics. A new strategy in combatting AMR is to modulate or disarm the microbes for their virulence and pathogenicity. Plants are considered as promising source for new drugs against AMR pathogens. In this study, fraction-based screening of the Cinnamomum zeylanicum extract was performed followed by detailed investigation of antiquorum sensing and antibiofilm activities of the most active fraction that is, C. zeylanicum hexane fraction (CZHF). More than 75% reduction in violacein pigment of C. violaceum 12472 was overserved. CZHF successfully modulated the virulence of Pseudomonas aeruginosa PAO1 by 60.46%-78.35%. A similar effect was recorded against Serratia marcescens MTCC 97. A broad-spectrum inhibition of biofilm development was found in presence of sub-MICs of CZHF. The colonization of bacteria onto the glass coverslips was remarkably reduced apart from the reduction in exopolymeric substances. Alkaloids and terpenoids were found in CZHF. GC/MS analysis revealed the presence of cinnamaldehyde dimethyl acetal, 2-propenal, coumarin, and α-copaene as major phytocompounds. This study provides enough evidence to support potency of C. zeylanicum extract in targeting the virulence of Gram -ve pathogenic bacteria. The plant extract or active compounds can be developed as successful drugs after careful in vivo examination to target microbial infections. RESEARCH HIGHLIGHTS: Hexane fraction of Cinnamomum zeylanicum is active against QS and biofilms. The broad-spectrum antibiofilm activity was further confirmed by microscopic analysis. Dimethyl acetal, 2-propenal, coumarin, α-copaene, and so forth are major phytocompounds.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Shavez Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Arshad
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Altaf Khan
- Department of Pharmacology, Central Research Laboratory, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohd Adil
- Department of Environmental Sciences, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
5
|
Mangal S, Dua T, Chauhan M, Dhingra N, Chhibber S, Singh V, Harjai K. Design, Synthesis, and Quorum Quenching Potential of Novel Catechol–Zingerone Conjugate to Find an Elixir to Tackle Pseudomonas aeruginosa Through the Trojan Horse Strategy. Front Chem 2022; 10:902719. [PMID: 35783213 PMCID: PMC9240400 DOI: 10.3389/fchem.2022.902719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022] Open
Abstract
To address the issue of multidrug resistance in Pseudomonas aeruginosa, a novel catechol–zingerone conjugate (1) linked via a non-hydrolyzable 1,2,3-triazole linker was synthesized and subjected to biological evaluation based on the Trojan horse strategy. To enhance the efficacy, catechol, a xenosiderophore, utilized by P. aeruginosa for iron assimilation, and the dietary phytochemical zingerone, known for its anti-virulent activity against Pseudomonas aeruginosa, were exploited in the present study. Theoretical validation of conjugate (1) was conducted by in silico molecular docking analysis to determine the interaction with outer membrane transport receptor PirA and quorum sensing signal receptors. In addition, nine-fold binding affinity of Conjugate (1) toward PirA (5FP2) in comparison to its natural ligand catechol with D-score −1.13 Å authenticated the designed Trojan horse drug. Conjugate (1) showed stronger anti-virulent activity than zingerone; hence, it exhibited a promising anti-biofilm efficacy as assessed by crystal violet assay and visualized by FESEM toward P. aeruginosa. Encouraging results against P. aeruginosa in terms of quorum sensing regulated virulence factors, motility phenotypes, and biofilm formation with no cell cytotoxicity and could help open hitherto unexplored possibilities of establishing Trojan horse drugs as a successful approach against multidrug resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Surabhi Mangal
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Tamanna Dua
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | - Monika Chauhan
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Vasundhara Singh
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, India
- *Correspondence: Vasundhara Singh, ; Kusum Harjai,
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
- *Correspondence: Vasundhara Singh, ; Kusum Harjai,
| |
Collapse
|
6
|
Characterization of Uropathogenic Pseudomonas aeruginosa: Serotypes, Resistance Phenotypes, and Virulence Genotypes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a major cause of urinary tract infections. This organism has extended resistance to antimicrobials along with multiple virulence factors, making it difficult to treat. In this study, 49 isolates from urine samples were identified as P. aeruginosa and serotyped by the slide agglutination method. The sensitivity of isolates against 10 antipseudomonal drugs was determined. Phenotypically, lipase, protease, hemolysin, and biofilm production were detected. Genes for the type III secretion system, elastase B, and exotoxin A were detected by PCR. Serotype O11 was the most predominant serotype among test isolates. High levels of resistance were observed against ceftazidime, cefepime, piperacillin, and piperacillin/tazobactam while 10.2% of isolates were resistant to amikacin. MDR was detected in 20.4% of the isolates and was significantly associated with strong biofilm producers. About 95.9% and 63.3% of P. aeruginosa isolates had proteolytic and lipolytic activity, respectively. Among the genes detected, the exoY gene was the most prevalent gene (79.6%), while the exoU gene was the least frequent one (10.2%). toxA and lasB genes were amplified in 63.27% and 75.5% of the isolates, respectively. In addition, the exoU gene was significantly associated with MDR isolates. The high incidence of exoS, exoT, exoY, lasB, and toxA genes in uropathogenic P. aeruginosa implies that these genes can be considered markers for virulent isolates. Furthermore, the coexistence of exoU and exoS genes, even in 6% of isolates, poses a significant treatment challenge because those isolates possess both the invasive and cytotoxic properties of both effector proteins.
Collapse
|
7
|
Qais FA, Khan MS, Ahmad I, Husain FM, Al-Kheraif AA, Arshad M, Alam P. Plumbagin inhibits quorum sensing-regulated virulence and biofilms of Gram-negative bacteria: in vitro and in silico investigations. BIOFOULING 2021; 37:724-739. [PMID: 34396840 DOI: 10.1080/08927014.2021.1955250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The global rise in antimicrobial resistance and lack of discovery of new antimicrobials have created serious concerns. Targeting quorum sensing (QS) and biofilms of pathogenic bacteria is considered a promising approach in antimicrobial drug discovery. This study explored the inhibitory effect of plumbagin against biofilms and QS of Chromobacterium violaceum, Serratia marcescens and Pseudomonas aeruginosa. Violacein production in C. violaceum 12472 was reduced by >80%. The virulent traits of P. aeruginosa PAO1 such as pyocyanin, rhamnolipid and proteases were also inhibited at sub-minimum inhibitory concentrations. Moreover, the biofilms of the test bacteria were reduced by 56-70%. Plumbagin reduced the bacterial adherence and colonization on solid surface. Computational studies gave closer insights regarding the possible modes of action. Molecular dynamics simulations revealed that the protein complexes were quite stable under physiological conditions. This study provides both experimental and computational evidence regarding the efficacy of plumbagin against biofilms and the QS-controlled virulence factors of Gram-negative bacteria.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Shavez Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Abdullah Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Arshad
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-kharj, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Wegener A, Lima KO, Holm AE, Gomes LC, Matos LO, Vieira IVM, Souza RM, Marinho CRF, Vestergaard LS, Biering-Sørensen T, Silvestre OM, Brainin P. Cardiopulmonary alterations by ultrasound in a patient with uncomplicated mixed malaria infection: a case report from the Amazon Basin. Malar J 2021; 20:330. [PMID: 34321001 PMCID: PMC8316880 DOI: 10.1186/s12936-021-03861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Information on cardiopulmonary complications in clinical malaria is sparse and diagnosis may be difficult in resource-limited areas due to lack of proper diagnostic tools and access to medical care. A case of pericardial effusion and pulmonary alterations assessed by ultrasound in a patient with uncomplicated mixed malaria infection is described. CASE PRESENTATION A previously healthy 23-year-old male from the Amazon Basin was diagnosed with mixed infection of Plasmodium vivax and Plasmodium falciparum by peripheral blood smear. The patient presented with mild malaria symptoms without signs of severe malaria, but reported moderate chest pain and shortness of breath. Laboratory analyses revealed thrombocytopenia and anemia. The electrocardiogram had PR depressions and bedside ultrasound of the cardiopulmonary system showed pericardial effusion (18 mm) accompanied by multiple B-lines in the lungs, identified as vertical artifacts extending from the pleural line. Cardiac biomarkers were normal. The patient was treated according to national guidelines for malaria and suspected pericarditis, respectively. At follow-up on day 5, the pericardial effusion (9mm) and B-lines had markedly decreased. By day 21 the patient was asymptomatic, had completed the treatment, and the electrocardiogram and ultrasound findings had normalized. CONCLUSIONS This case report highlight the usefulness of bedside ultrasound to identify cardiopulmonary involvement in patients with uncomplicated malaria and relevant symptoms.
Collapse
Affiliation(s)
- Alma Wegener
- Multidisciplinary Centre, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil. .,Department of Cardiology, Herlev and Gentofte Hospital, Cardiovascular Non-Invasive Imaging Research Laboratory, University of Copenhagen, Hospitalsvej 8, Post 835, 2900, Copenhagen, Denmark.
| | - Karine O Lima
- Multidisciplinary Centre, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil
| | - Anna E Holm
- Multidisciplinary Centre, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil.,Department of Cardiology, Herlev and Gentofte Hospital, Cardiovascular Non-Invasive Imaging Research Laboratory, University of Copenhagen, Hospitalsvej 8, Post 835, 2900, Copenhagen, Denmark
| | - Laura C Gomes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luan O Matos
- Multidisciplinary Centre, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil
| | - Isabelle V M Vieira
- Multidisciplinary Centre, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil
| | - Rodrigo Medeiros Souza
- Multidisciplinary Centre, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil
| | | | - Lasse S Vestergaard
- National Malaria Reference Laboratory, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Tor Biering-Sørensen
- Department of Cardiology, Herlev and Gentofte Hospital, Cardiovascular Non-Invasive Imaging Research Laboratory, University of Copenhagen, Hospitalsvej 8, Post 835, 2900, Copenhagen, Denmark.,Faculty of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Odilson M Silvestre
- Health and Sport Science Center, Federal University of Acre, Rio Branco, Acre, Brazil
| | - Philip Brainin
- Multidisciplinary Centre, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil.,Department of Cardiology, Herlev and Gentofte Hospital, Cardiovascular Non-Invasive Imaging Research Laboratory, University of Copenhagen, Hospitalsvej 8, Post 835, 2900, Copenhagen, Denmark
| |
Collapse
|
9
|
Qais FA, Ahmad I, Husain FM, Alomar SY, Ahmad N, Albalawi F, Alam P, Albalawi T. Interference of quorum sensing regulated bacterial virulence factors and biofilms by Plumbago zeylanica extract. Microsc Res Tech 2021; 84:3150-3160. [PMID: 34268833 DOI: 10.1002/jemt.23872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/23/2022]
Abstract
There has been tremendous spread of antimicrobial resistance globally, mainly due to the excessive and unnecessary use of antibiotics, making the situation alarming. This has created a need for the development of alternative strategies to selectively target the bacterial pathogenicity without exerting selection pressure for the development of antimicrobial resistance. Targeting quorum sensing (QS)-mediated virulence and biofilms by nontoxic natural products is gaining importance as new control strategy to combat the virulence and biofilms of pathogenic bacteria. In this study, the crude extract of Plumbago zeylanica was fractioned in different solvents using liquid-liquid partitioning to obtain the most bioactive fraction. The inhibitory effect of the bioactive extract of P. zeylanica on QS at sub-minimum inhibitory concentrations (MICs) was studied against Chromobacterium violaceum 12472, Pseudomonas aeruginosa PAO1, and Serratia marcescens MTCC 97. Biofilm inhibition was studied using microtiter plate assay, scanning electron microscopy, and confocal laser scanning microscopy. Major phytocompounds detected were cinnamaldehyde dimethyl acetal, plumbagin, asarone, 4-chromanol, phthalic acid, palmitic acid, ergost-5-en-3-ol, stigmasterol, and β-sitosterol. The violacein production in C. violaceum 12472 was reduced by >80% in the presence of P. zeylanica hexane fraction (PZHF; 200 μg/ml). The most active PZHF inhibited QS-mediated virulence factors of P. aeruginosa PAO1 such as pyocyanin, pyoverdin, rhamnolipid production, motility, etc., significantly at sub-MICs. Similarly, PZHF showed 59 to 76% inhibition of biofilm formation of above test pathogens. The findings revealed that active fraction of P. zeylanica was effective against the QS-regulated functions and biofilms development of Gram -ve pathogenic bacteria.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Suliman Y Alomar
- Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia
| | - Fadwa Albalawi
- Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Pravej Alam
- Department of Biology, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Thamer Albalawi
- Department of Biology, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
10
|
Ding Y, Sun Z, Shi R, Cui H, Liu Y, Mao H, Wang B, Zhu D, Yan F. Integrated Endotoxin Adsorption and Antibacterial Properties of Cationic Polyurethane Foams for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2860-2869. [PMID: 30586274 DOI: 10.1021/acsami.8b19746] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gram-negative bacteria, containing toxic proinflammatory and pyrogenic substances [endotoxin or lipopolysaccharide (LPS)], can lead to infection and associated serious diseases, such as sepsis and septic shock. Development of antimicrobial materials with intrinsically endotoxin adsorption activity can prevent the release of bacterial toxic components while killing bacteria. Herein, a series of imidazolium-type polyurethane (PU) foams with antimicrobial properties were synthesized. The content effects of cationic moieties on the antimicrobial activities against Gram-negative Escherichia coli and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus as well as the endotoxin adsorption property were investigated. The obtained PU foams show slightly higher efficiency against two Gram-negative strains than for Gram-positive one and high absorbability of LPS. A wound healing test using P. aeruginosa and its isolated LPS-treated mice as the models further demonstrated that imidazolium-type PU foams combine both antibacterial and endotoxin adsorption properties and may have a potential application as an antimicrobial wound dressing in a clinical setting.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Zhe Sun
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Rongwei Shi
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Hengqing Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200011 , China
| | - Yangyang Liu
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200011 , China
| | - Duming Zhu
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| |
Collapse
|
11
|
Wang ZD, Liu Q, Liu HH, Li S, Zhang L, Zhao YK, Zhu XQ. Prevalence of Cryptosporidium, microsporidia and Isospora infection in HIV-infected people: a global systematic review and meta-analysis. Parasit Vectors 2018; 11:28. [PMID: 29316950 PMCID: PMC5759777 DOI: 10.1186/s13071-017-2558-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diarrhea caused by opportunistic intestinal protozoa is a common problem in HIV infection. We aimed to establish the prevalence of Cryptosporidium, misrosporidia, and Isospora in HIV-infected people using a systematic review and meta-analysis, which is central to developing public policy and clinical services. METHODS We searched PubMed, ScienceDirect, Google Scholar, Embase, Chinese Web of Knowledge, Wanfang, and Chongqing VIP databases for studies reporting Cryptosporidium, microsporidia, or Isospora infection in HIV-infected people. We extracted the numbers of people with HIV and protozoa infection, and estimated the pooled prevalence of parasite infection by a random effects model. RESULTS Our research identified 131 studies that reported Cryptosporidium, microsporidia, and Isospora infection in HIV-infected people. We estimated the pooled prevalence to be 14.0% (3283/43,218; 95% CI: 13.0-15.0%) for Cryptosporidium, 11.8% (1090/18,006; 95% CI: 10.1-13.4%) for microsporidia, and 2.5% (788/105,922; 95% CI: 2.1-2.9%) for Isospora. A low prevalence of microsporidia and Isospora infection was found in high-income countries, and a high prevalence of Cryptosporidium and Isospora infection was found in sub-Saharan Africa. We also detected a high prevalence of Cryptosporidium, microsporidia, and Isospora infection in patients with diarrhea. Sensitivity analysis showed that three studies significantly affect the prevalence of Isospora, which was adjusted to 5.0% (469/8570; 95% CI: 4.1-5.9%) by excluding these studies. CONCLUSIONS Our findings suggest that HIV-infected people have a high prevalence of Cryptosporidium, microsporidia, and Isospora infection in low-income countries and patients with diarrhea, especially in sub-Saharan Africa, reinforcing the importance of routine surveillance for opportunistic intestinal protozoa in HIV-infected people.
Collapse
Affiliation(s)
- Ze-Dong Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046 People’s Republic of China
| | - Quan Liu
- Military Veterinary Institute, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun, Jilin Province 130122 People’s Republic of China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130188 People’s Republic of China
| | - Huan-Huan Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130188 People’s Republic of China
| | - Shuang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130188 People’s Republic of China
| | - Li Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130188 People’s Republic of China
| | - Yong-Kun Zhao
- Military Veterinary Institute, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun, Jilin Province 130122 People’s Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046 People’s Republic of China
| |
Collapse
|
12
|
Srinivasan R, Mohankumar R, Kannappan A, Karthick Raja V, Archunan G, Karutha Pandian S, Ruckmani K, Veera Ravi A. Exploring the Anti-quorum Sensing and Antibiofilm Efficacy of Phytol against Serratia marcescens Associated Acute Pyelonephritis Infection in Wistar Rats. Front Cell Infect Microbiol 2017; 7:498. [PMID: 29259923 PMCID: PMC5723315 DOI: 10.3389/fcimb.2017.00498] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/20/2017] [Indexed: 01/15/2023] Open
Abstract
Quorum Sensing (QS) mechanism, a bacterial density-dependent gene expression system, governs the Serratia marcescens pathogenesis through the production of virulence factors and biofilm formation. The present study demonstrates the anti-quorum sensing (anti-QS), antibiofilm potential and in vivo protective effect of phytol, a diterpene alcohol broadly utilized as food additive and in therapeutics fields. In vitro treatment of phytol (5 and 10 μg/ml) showed decreasing level of biofilm formation, lipase and hemolysin production in S. marcescens compared to their respective controls. More, microscopic analyses confirmed the antibiofilm potential of phytol. The biofilm related phenomenons such as swarming motility and exopolysccharide productions were also inhibited by phytol. Furthermore, the real-time analysis elucidated the molecular mechanism of phytol which showed downregulation of fimA, fimC, flhC, flhD, bsmB, pigP, and shlA gene expressions. On the other hand, the in vivo rescue effect of phytol was assessed against S. marcescens associated acute pyelonephritis in Wistar rat. Compared to the infected and vehicle controls, the phytol treated groups (100 and 200 mg/kg) showed decreased level of bacterial counts in kidney, bladder tissues and urine samples on the 5th post infection day. As well, the phytol treatment showed reduced level of virulence enzymes such as lipase and protease productions compared to the infected and vehicle controls. Further, the infected and vehicle controls showed increasing level of inflammatory markers such as malondialdehyde (MDA), nitric oxide (NO) and myeloperoxidase (MPO) productions. In contrast, the phytol treatment showed decreasing level of inflammatory markers. In histopathology, the uninfected animal showed normal kidney and bladder structure, wherein, the infected animals showed extensive infiltration of neutrophils in kidney and bladder tissues. In contrast, the phytol treatment showed normal kidney and bladder tissues. Additionally, the toxic effect of phytol (200 mg/kg) was assessed by single dose toxicity analysis. No changes were observed in hematological, biochemical profiles and histopathological analysis of vital organs in phytol treated animals compared to the untreated controls. Hence, this study suggested the potential use of phytol for its anti-QS, antibiofilm and anti-inflammatory properties against S. marcescens infections and their associated inflammation reactions.
Collapse
Affiliation(s)
| | - Ramar Mohankumar
- Department of Pharmaceutical Technology, National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, India
| | | | | | - Govindaraju Archunan
- Department of Animal Science, Centre for Pheromone Technology, Bharathidasan University, Tiruchirappalli, India
| | | | - Kandasamy Ruckmani
- Department of Pharmaceutical Technology, National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, India
| | | |
Collapse
|
13
|
Newman JW, Floyd RV, Fothergill JL. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol Lett 2017; 364:3866593. [DOI: 10.1093/femsle/fnx124] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022] Open
|
14
|
Musthafa KS, Sianglum W, Saising J, Lethongkam S, Voravuthikunchai SP. Evaluation of phytochemicals from medicinal plants of Myrtaceae family on virulence factor production by Pseudomonas aeruginosa. APMIS 2017; 125:482-490. [PMID: 28294414 DOI: 10.1111/apm.12672] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 01/08/2017] [Indexed: 01/08/2023]
Abstract
Virulence factors regulated by quorum sensing (QS) play a critical role in the pathogenesis of an opportunistic human pathogen, Pseudomonas aeruginosa in causing infections to the host. Hence, in the present work, the anti-virulence potential of the medicinal plant extracts and their derived phytochemicals from Myrtaceae family was evaluated against P. aeruginosa. In the preliminary screening of the tested medicinal plant extracts, Syzygium jambos and Syzygium antisepticum demonstrated a maximum inhibition in QS-dependent violacein pigment production by Chromobacterium violaceum DMST 21761. These extracts demonstrated an inhibitory activity over a virulence factor, pyoverdin, production by P. aeruginosa ATCC 27853. Gas chromatography-mass spectrometric (GC-MS) analysis revealed the presence of 23 and 12 phytochemicals from the extracts of S. jambos and S. antisepticum respectively. Three top-ranking phytochemicals, including phytol, ethyl linoleate and methyl linolenate, selected on the basis of docking score in molecular docking studies lowered virulence factors such as pyoverdin production, protease and haemolytic activities of P. aeruginosa to a significant level. In addition, the phytochemicals reduced rhamnolipid production by the organism. The work demonstrated an importance of plant-derived compounds as anti-virulence drugs to conquer P. aeruginosa virulence towards the host.
Collapse
Affiliation(s)
- Khadar Syed Musthafa
- Excellent Research Laboratory on Natural Products, Faculty of Science, and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Wipawadee Sianglum
- Excellent Research Laboratory on Natural Products, Faculty of Science, and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jongkon Saising
- School of Health Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Sakkarin Lethongkam
- Excellent Research Laboratory on Natural Products, Faculty of Science, and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Excellent Research Laboratory on Natural Products, Faculty of Science, and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
15
|
Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume. PLoS One 2015; 10:e0132791. [PMID: 26186595 PMCID: PMC4505864 DOI: 10.1371/journal.pone.0132791] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/19/2015] [Indexed: 12/30/2022] Open
Abstract
Recently, extracts of Dalbergia trichocarpa bark have been shown to disrupt P. aeruginosa PAO1 quorum sensing (QS) mechanisms, which are key regulators of virulence factor expression and implicated in biofilm formation. One of the active compounds has been isolated and identified as oleanolic aldehyde coumarate (OALC), a novel bioactive compound that inhibits the formation of P. aeruginosa PAO1 biofilm and its maintenance as well as the expression of the las and rhl QS systems. Consequently, the production of QS-controlled virulence factors including, rhamnolipids, pyocyanin, elastase and extracellular polysaccharides as well as twitching and swarming motilities is reduced. Native acylhomoserine lactones (AHLs) production is inhibited by OALC but exogenous supply of AHLs does not restore the production of virulence factors by OALC-treated cultures, indicating that OALC exerts its effect beyond AHLs synthesis in the QS pathways. Further experiments provided a significant inhibition of the global virulence factor activator gacA by OALC. OALC disorganizes established biofilm structure and improves the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Finally, a significant reduction of Caenorhabditis elegans paralysis was recorded when the worms were infected with OALC-pre-treated P. aeruginosa. Taken together, these results show that triterpenoid coumarate esters are suitable chemical backbones to target P. aeruginosa virulence mechanisms.
Collapse
|
16
|
Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13:269-84. [PMID: 25853778 DOI: 10.1038/nrmicro3432] [Citation(s) in RCA: 1964] [Impact Index Per Article: 218.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urinary tract infections (UTIs) are a severe public health problem and are caused by a range of pathogens, but most commonly by Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis and Staphylococcus saprophyticus. High recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly increase the economic burden of these infections. In this Review, we discuss how basic science studies are elucidating the molecular details of the crosstalk that occurs at the host-pathogen interface, as well as the consequences of these interactions for the pathophysiology of UTIs. We also describe current efforts to translate this knowledge into new clinical treatments for UTIs.
Collapse
|
17
|
O’Brien AT, Ramírez JF, Martínez SP. A descriptive study of 16 severe Plasmodium vivax cases from three municipalities of Colombia between 2009 and 2013. Malar J 2014; 13:404. [PMID: 25318617 PMCID: PMC4203896 DOI: 10.1186/1475-2875-13-404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium vivax, the most geographically distributed cause of malaria, accounts for more than 70% of cases in the Americas. In Colombia, P. vivax was responsible for 67.3% of cases in the last five years. Despite vivax malaria impact worldwide, historically it has been neglected and considered to be a benign disease. In the last decade medical literature reports have emerged countering this benign outlook. This study pretends to describe the clinical and paraclinical profile of severe vivax malaria cases hospitalized in Tumaco, Cali, Buenaventura between 2009 and 2013, to contribute to the knowledge regarding the behaviour and clinical expression of this disease. METHODS This is a descriptive, retrospective case-series study of 16 severe malaria vivax cases, hospitalized between 2009 and 2013, in Colombian municipalities of Tumaco, Buenaventura and Cali. Severe malaria vivax cases were defined using criteria adapted from the national guidelines. Descriptive analyses of reason for consultation, signs and symptoms, diagnosis, treatment, paraclinical characteristics, complications, and time hospitalized, were conducted. RESULTS Sixteen cases of severe P. vivax were analysed. Fever, chills and headache were shown to be the main admission symptoms. Elevation of total bilirubin levels in 18.75%, and severe thrombocytopaenia in 25% of cases were the main complications presented during hospitalization. All cases responded to treatment, there were no deaths. CONCLUSIONS The following questions derived from this study could be the basis for future research: 1) Does the time to consultation have an impact on the number of days hospitalized and how cases progress during hospitalization, 2) Are the severity criteria in WHO guidelines sensitive enough to be used in clinical practice compared to national guidelines, and 3) How does malnutrition contribute to anaemia in malaria-endemic regions.
Collapse
Affiliation(s)
- Anthony T O’Brien
- Fundación Santa Fe de Bogotá Centro de Estudios e Investigación en Salud - CEI, Carrera 7 B # 123-90, Piso 3, Bogotá, Colombia
| | - Jesica F Ramírez
- Fundación Santa Fe de Bogotá Centro de Estudios e Investigación en Salud - CEI, Carrera 7 B # 123-90, Piso 3, Bogotá, Colombia
| | - Sandra P Martínez
- Fundación Santa Fe de Bogotá Centro de Estudios e Investigación en Salud - CEI, Carrera 7 B # 123-90, Piso 3, Bogotá, Colombia
| |
Collapse
|
18
|
Characterization of N-Acyl-homoserine Lactones (AHLs)-Deficient Clinical Isolates of Pseudomonas aeruginosa. Indian J Microbiol 2014; 54:158-62. [PMID: 25320416 DOI: 10.1007/s12088-014-0449-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing severe respiratory infections. Acylated homoserine lactones (AHLs) are self-generated diffusible signal molecules that mediate population density dependent gene expression (quorum sensing, QS) in a variety of Gram-negative bacteria, and several virulence genes of bacterial pathogens are known to be controlled by QS. Hence, fitness mutant of virulent factors is beneficial for natural selection. In this study, strains of P. aeruginosa isolated from chronic lung infection of cystic fibrosis patients, were screened for AHLs production by using indicator strains of Chromobacterium violaceum CV026 and Agrobacterium tumefaciens strain At136. Four AHLs defective strains were selected from fifty-three clinical isolates. PCR analysis revealed that only one isolate was negative for lasR gene. These four AHLs defective isolates produced less virulence factors and forming less biofilm than PAO1. Only isolate PA41 produce little more pyocyanin than PAO1. The results indicate that, despite the pivotal role of QS in the pathogenesis of P. aeruginosa infections, AHLs-deficient strains are still capable of causing infections in human.
Collapse
|