1
|
Muzyukina P, Soutourina O. CRISPR genotyping methods: Tracing the evolution from spoligotyping to machine learning. Biochimie 2024; 217:66-73. [PMID: 37506757 DOI: 10.1016/j.biochi.2023.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems provide prokaryotes with adaptive immunity defenses against foreign genetic invaders. The identification of CRISPR-Cas function is among the most impactful discoveries of recent decades that have shaped the development of genome editing in various organisms paving the way for a plethora of promising applications in biotechnology and health. Even before the discovery of CRISPR-Cas biological role, the particular structure of CRISPR loci has been explored for epidemiological genotyping of bacterial pathogens. CRISPR-Cas loci are arranged in CRISPR arrays of mostly identical direct repeats intercalated with invader-derived spacers and an operon of cas genes encoding the Cas protein components. Each small CRISPR RNA (crRNA) encoded within the CRISPR array constitutes a key functional unit of this RNA-based CRISPR-Cas defense system guiding the Cas effector proteins toward the foreign nucleic acids for their destruction. The information acquired from prior invader encounters and stored within CRISPR arrays turns out to be extremely valuable in tracing the microevolution and epidemiology of major bacterial pathogens. We review here the history of CRISPR-based typing strategies highlighting the first PCR-based methods that have set the stage for recent developments of high-throughput sequencing and machine learning-based approaches. A great amount of whole genome sequencing and metagenomic data accumulated in recent years opens up new avenues for combining experimental and computational approaches of high-resolution CRISPR-based typing.
Collapse
Affiliation(s)
- P Muzyukina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - O Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
2
|
Ejo M, Torrea G, Diro E, Abebe A, Kassa M, Girma Y, Tesfa E, Ejigu K, Uwizeye C, Gehre F, de Jong BC, Rigouts L. Strain diversity and gene mutations associated with presumptive multidrug-resistant Mycobacterium tuberculosis complex isolates in Northwest Ethiopia. J Glob Antimicrob Resist 2023; 32:167-175. [PMID: 36470362 DOI: 10.1016/j.jgar.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/25/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022] Open
Abstract
OBJECTIVES In this study, we assessed the genetic diversity and gene mutations that confer resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolone (FQ), and second-line injectable (SLI) drugs in RIF-resistant (RR)/multidrug-resistant tuberculosis (MDR-TB) isolates in Northwest Ethiopia. METHODS Spoligotyping was used to assign isolates to TB lineages (Ls), and Hain line probe assays were used to detect resistance to RIF, INH, and FQs, and SLIs. RESULTS Among 130 analyzed strains, 68.5% were RR, and four major Mycobacterium tuberculosis complex lineages (L1, L3, L4, and L7) were identified with a predominance of the Euro-American L4 (72, 54.7%), while L7 genotypes were less common (3, 2.3%). Overall, the L4-T3-ETH (41, 32.0%), L3-CAS1-Delhi (29, 22.7%), and L3-CAS1-Killi (19, 14.8%) families were most common. Line probe analysis showed that among rpoB mutants, 65.2% were S450L, while 87.8% of katG mutants were S315T. Only three isolates showed mutation (c-15t) at the inhA gene, and no double mutation with katG and inhA genes was found. Six strains, two each of L1, L3, and L4, were resistant to FQs, having gyrA mutations (D94G, S91P), of which three isolates had additional resistance to SLI (rrs A1401G or C1402T mutations) including one isolate with low-level kanamycin (KAN) resistance. CONCLUSIONS This study showed a predominance of L4-T3-ETH, L3-CAS1-Delhi, and L3-CAS1-Killi families, with a high rate of rpoB_S450L and katG_S315T mutations and a low proportion of gyrA and rrs mutations. L7 was less frequently observed in this study. Further investigations are, therefore, needed to understand L7 and other lineages with undefined mutations.
Collapse
Affiliation(s)
- Mebrat Ejo
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Gondar, Gondar, Ethiopia; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Gabriela Torrea
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ermias Diro
- Department of Internal Medicine, University of Gondar, Gondar, Ethiopia; MDR-TB Treatment and Follow-up Center, University of Gondar Specialized Hospital, Gondar, Ethiopia
| | - Ayenesh Abebe
- TB culture laboratory, University of Gondar Specialized Hospital, Gondar, Ethiopia
| | - Meseret Kassa
- TB culture laboratory, University of Gondar Specialized Hospital, Gondar, Ethiopia
| | - Yilak Girma
- TB culture laboratory, University of Gondar Specialized Hospital, Gondar, Ethiopia
| | - Eyasu Tesfa
- MDR-TB Treatment and Follow-up Center, University of Gondar Specialized Hospital, Gondar, Ethiopia
| | - Kefialew Ejigu
- TB culture laboratory, Amhara Public Health Institute, Bahir Dar, Ethiopia
| | - Cecile Uwizeye
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Florian Gehre
- Department of Infectious Disease Epidemiology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany; East African Community Secretariat, Arusha, Tanzania
| | - Bouke C de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leen Rigouts
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Worku G, Gumi B, Girma M, Mohammedbirhan B, Diriba G, Seid G, Getu M, Amare M, Sinshaw W, Ashagre W, Tschopp R, Carruth L, Ameni G. Drug sensitivity of clinical isolates of Mycobacterium tuberculosis and its association with bacterial genotype in the Somali region, Eastern Ethiopia. Front Public Health 2022; 10:942618. [PMID: 36062084 PMCID: PMC9428271 DOI: 10.3389/fpubh.2022.942618] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023] Open
Abstract
Background Drug resistance is becoming a major bottleneck for tuberculosis (TB) control programs in countries with high TB burdens. Although several studies were conducted on the drug sensitivity of Mycobacterium tuberculosis (M. tuberculosis) in central Ethiopia, there is a lack of data on the drug sensitivity of M. tuberculosis in the peripheral regions of the country including in the Somali region. Therefore, the objective of this study was to evaluate the drug sensitivity of M. tuberculosis and its association with bacterial genotype and evaluate the performance of Xpert MTB/RIF (Xpert) in detecting resistance to rifampicin (RIF). Methods A total of 302 M. tuberculosis were tested using the BD BACTEC-Mycobacteria Growth Indicator Tube 960 (MGIT 960) system for their drug sensitivity to the first-line anti-TB drugs. Besides, the drug sensitivity of 10 multidrug-resistant (MDR) M. tuberculosis isolates was evaluated for the second-line anti-TB drugs. Additionally, 177 of the 302 isolates were tested for genotypic drug resistance using Xpert. Chi-square and Fisher's exact tests were used for the evaluation of the association between variables and drug sensitivity. Results The overall prevalence of resistance to at least one drug was 11.6% (95% CI: 7.9-15.2%), while the prevalence of MDR was 3.3% (95% CI: 1.3-5.3%). Two of the 10 MDR isolates were resistant to capreomycin. The spoligotype Shared International Type (SIT) 149 was significantly associated with either monoresistance or MDR (p < 0.05). Of the 177 isolates tested by Xpert, 6.2% (11/177) were RIF-resistant. Discordant between Xpert and MGIT 960 was observed in one isolate and linked with probe-binding delay (ΔCT max = 5.8). The sensitivity and specificity of the Xpert assay were 100 and 99.4%, respectively, while its positive and negative predictive values were 90.9 and 100%, respectively. Conclusion The magnitude of MDR M. tuberculosis in the Somali region of Ethiopia was higher than the national prevalence of MDR-TB warranting the strengthening of the TB control program in the Somali region. Besides, drug resistance was associated with SIT 149 spoligotype (genotype). The Xpert assay was observed to have high sensitivity and specificity in detecting RIF-resistant M. tuberculosis, which is encouraging for its application widely.
Collapse
Affiliation(s)
- Getnet Worku
- College of Medicine and Health Sciences, Jigjiga University, Jigjiga, Ethiopia,Animal Health and Zoonotic Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Balako Gumi
- Animal Health and Zoonotic Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Musse Girma
- Animal Health and Zoonotic Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Getu Diriba
- Ethiopian Public Health Institute, National Tuberculosis Reference Laboratory, Addis Ababa, Ethiopia
| | - Getachew Seid
- Ethiopian Public Health Institute, National Tuberculosis Reference Laboratory, Addis Ababa, Ethiopia
| | - Melak Getu
- Ethiopian Public Health Institute, National Tuberculosis Reference Laboratory, Addis Ababa, Ethiopia
| | - Misikir Amare
- Ethiopian Public Health Institute, National Tuberculosis Reference Laboratory, Addis Ababa, Ethiopia
| | - Waganeh Sinshaw
- Ethiopian Public Health Institute, National Tuberculosis Reference Laboratory, Addis Ababa, Ethiopia
| | - Wondimu Ashagre
- One-Health Unit, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Rea Tschopp
- One-Health Unit, Armauer Hansen Research Institute, Addis Ababa, Ethiopia,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Lauren Carruth
- School of International Service, American University, Washington DC, DC, United States
| | - Gobena Ameni
- Animal Health and Zoonotic Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates,*Correspondence: Gobena Ameni ;
| |
Collapse
|
4
|
Al Mahrouqi S, Gadalla A, Al Azri S, Al-Hamidhi S, Al-Jardani A, Balkhair A, Al-fahdi A, Al Balushi L, Al Zadjali S, Al Marhoubi AMN, Babiker HA. Drug resistant Mycobacterium tuberculosis in Oman: resistance-conferring mutations and lineage diversity. PeerJ 2022; 10:e13645. [PMID: 35919400 PMCID: PMC9339217 DOI: 10.7717/peerj.13645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
Background The Sultanate of Oman is country a low TB-incidence, with less than seven cases per 105 population detected in 2020. Recent years have witnessed a persistence in TB cases, with sustained incidence rate among expatriates and limited reduction among Omanis. This pattern suggests transmission from the migrant population. The present study examined the genetic profile and drug resistance-conferring mutations in Mycobacterium tuberculosis collected from Omanis and expatriates to recognise possible causes of disease transmission. Methods We examined M. tuberculosis cultured positive samples, collected from Omanis (n = 1,344) and expatriates (n = 1,203) between 2009 and 2018. These isolates had a known in vitro susceptibility profile to first line anti-TB, Streptomycin (SM), Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB) and Pyrazinamide (PZA). The diversity of the isolates was assessed by spacer oligo-typing (spoligotyping). Drug resistance-conferring mutations resulted from full-length sequence of nine genes (katG, inhA, ahpc, rpoB, rpsL, rrs, embB, embC, pncA) and their phenotypic relationship were analysed. Results In total, 341/2192 (13.4%), M. tuberculosis strains showed resistance to any drug, comprising mono-resistance (MR) (242, 71%), poly-resistance (PR) (40, 11.7%) and multi-drug resistance (MDR) (59, 17.3%). The overall rate of resistance among Omanis and expatriates was similar; however, MDR and PZAR were significantly higher among Omanis, while INHR was greater among expatriates. Mutations rpsL K43R and rpoB S450L were linked to Streptomycin (SMR) and Rifampicin resistance (RIFR) respectively. Whereas, katG S315T and inhA -C15T/G-17T were associated with Isoniazid resistance (INHR). The resistance patterns (mono-resistant, poly-resistant and MDR) and drug resistance-conferring mutations were found in different spoligo-lineages. rpsL K43R, katG S315T and rpoB S450L mutations were significantly higher in Beijing strains. Conclusions Diverse drug resistant M. tuberculosis strains exist in Oman, with drug resistance-conferring mutations widespread in multiple spoligo-lineages, indicative of a large resistance reservoir. Beijing's M. tuberculosis lineage was associated with MDR, and multiple drug resistance-conferring mutations, favouring the hypothesis of migration as a possible source of resistant lineages in Oman.
Collapse
Affiliation(s)
- Sara Al Mahrouqi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman
| | - Amal Gadalla
- Division of Population Medicine, School of Medicine, College of Biomedical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Saleh Al Azri
- Central Public Health Laboratories, MOH, Muscat, Oman
| | - Salama Al-Hamidhi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman
| | | | - Abdullah Balkhair
- Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman
| | - Amira Al-fahdi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman
| | | | | | | | - Hamza A. Babiker
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, Oman, Muscat, Oman,Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Merid Y, Hailu E, Habtamu G, Tilahun M, Abebe M, Hailu M, Hailu T, Datiko DG, Woldeamanuel Y, Aseffa A. Molecular Epidemiology of Mycobacterium tuberculosis strains isolated from pulmonary tuberculosis patients in south Ethiopia. J Infect Dev Ctries 2021; 15:1299-1307. [PMID: 34669600 PMCID: PMC8556644 DOI: 10.3855/jidc.14742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/04/2021] [Indexed: 01/22/2023] Open
Abstract
Introduction: Understanding the epidemiology of tuberculosis is limited by lack of genotyping data. We sought to characterize the drug susceptibility testing patterns and genetic diversity of M. tuberculosis isolates in southern Ethiopia. Methodology: A cross-sectional study was conducted among newly diagnosed sputum smear positive patients with tuberculosis visiting nine health facilities in southern Ethiopia from June 2015 to May 2016. Three consecutive sputum samples (spot-morning-spot) per patient were examined using acid-fast bacilli smear microscopy with all smear positive specimens having acid-fast bacilli cultures performed. M. tuberculosis isolates had drug susceptibility testing performed using indirect proportion method and were genotyped with RD9 deletion analysis and spoligotyping. Mapping of strain was made using geographic information system. Results: Among 250 newly diagnosed patients with tuberculosis, 4% were HIV co-infected. All 230 isolates tested were M. tuberculosis strains belonging to three lineages: Euro-American, 187 (81%), East-African-Indian, 31 (14%), and Lineage 7 (Ethiopian lineage), 8 (4%); categorized into 63 different spoligotype patterns, of which 85% fell into 28 clusters. M. tuberculosis strains were clustered by geographic localities. The dominant spoligotypes were SIT149 (21%) and SIT53 (19%). Drug susceptibility testing found that 14% of isolates tested were resistant to ≥ 1 first line anti- tuberculosis drugs and 11% to INH. SIT 149 was dominant among drug resistant isolates. Conclusions: The study revealed several clusters and drug resistant strains of M. tuberculosis in the study area, suggesting recent transmission including of drug resistant tuberculosis. Wider monitoring of drug susceptibility testing and geospatial analysis of transmission trends is required to control tuberculosis in southern Ethiopia.
Collapse
Affiliation(s)
- Yared Merid
- College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia.
| | - Elena Hailu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Getnet Habtamu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Melaku Tilahun
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Mesay Hailu
- College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Tsegaye Hailu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Saati AA, Khurram M, Faidah H, Haseeb A, Iriti M. A Saudi Arabian Public Health Perspective of Tuberculosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10042. [PMID: 34639342 PMCID: PMC8508237 DOI: 10.3390/ijerph181910042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022]
Abstract
Tuberculosis is a global health challenge due to its spreading potential. The Kingdom of Saudi Arabia (KSA) faces a challenge in the spread of tuberculosis from migrant workers, but the foremost threat is the huge number of pilgrims who travel to visit sacred sites of the Islamic world located in the holy cities of Makkah and Al Madina. Pilgrims visit throughout the year but especially in the months of Ramadan and Zul-Hijah. The rise of resistance in Mycobacterium tuberculosis is an established global phenomenon that makes such large congregations likely hotspots in the dissemination and spread of disease at a global level. Although very stringent and effective measures exist, the threat remains due to the ever-changing dynamics of this highly pathogenic disease. This overview primarily highlights the current public health challenges posed by this disease to the Saudi health system, which needs to be highlighted not only to the concerned authorities of KSA, but also to the concerned global quarters since the pilgrims and migrants come from all parts of the world with a majority coming from high tuberculosis-burdened countries.
Collapse
Affiliation(s)
- Abdullah A. Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Muhammad Khurram
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al Qura University, Makkah 24382, Saudi Arabia;
| | - Abdul Haseeb
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al Qura University, Makkah 24382, Saudi Arabia;
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- Phytochem Lab, Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- Center for Studies on Bioispired Agro-Environmental Technology (BAT Center), Università degli Studi di Napoli “Federico II”, 80055 Portici, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| |
Collapse
|
7
|
Almeida SMD, Malaspina AC, Leite CQF, Saad MHF. Usefulness of 3'- 5' IS6110-RFLP genotyping and spoligotyping of Mycobacterium tuberculosis isolated in a tertiary hospital: a retrospective study detecting unsuspected epidemiological events. Rev Inst Med Trop Sao Paulo 2019; 61:e51. [PMID: 31531629 PMCID: PMC6746203 DOI: 10.1590/s1678-9946201961051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/18/2019] [Indexed: 11/22/2022] Open
Abstract
A drug resistance survey involving Mycobacterium tuberculosis isolated from patients of a tertiary Hospital in the Rio de Janeiro city (RJ), Brazil, between the years 1996 and 1998 revealed a high frequency of isoniazid (HR) resistance. These isolates were revisited and genotyped. Patients came from different RJ neighborhoods and municipalities, and 70% were outpatients. Applying the 3’ and 5’ IS 6110 -RFLP and the Spoligotype genotyping methods, the clonal structure of this population was investigated obtaining a snapshot of past epidemiological events. The 3’ clusters were subsequently 5’ IS 6110 -RFLP typed. Spoligotyping was analyzed in the SITVIT2 database. Epidemiological relationships were investigated. The major lineage was T (54.4%), and SIT 53/T1 and SIT 535/T1 were the most frequent. The T1 sublineage comprises 12.8% of resistant strains and SIT 535 were assigned for 31.8% of them. Orphan patterns corresponded to 12% and 73.3% and belonged to the T lineage. One pattern was unlisted in the SITVIT2. The 5’ IS 6110 -RFLP did not confirm 3/12 of the 3’ IS 6110 -RFLP clusters. A combination of all methods decreased the number of clusters to three. Nosocomial transmission was associated with one cluster involving a hospital cupbearer. This event was suspected in a multidrug resistant-TB inpatient caregiver who harbored a mixed infection. The 3’ IS 6110 clusters were associated with HR (p=0.046). These genotypic retrospective data may reflect a fraction of more extensive recent transmission in different communities that may be corroborated by the concentration of HR patients, and may serve as a database for further evolutionary and characterization evaluation of circulating strains and together with epidemiological data favors a more effective transmission control.
Collapse
Affiliation(s)
- Silvia Maria de Almeida
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Microbiologia Celular, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Malaspina
- Universidade Federal de São Paulo, Instituto de Ciências Farmacêuticas, São Paulo, São Paulo, Brazil
| | | | - Maria Helena Féres Saad
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Microbiologia Celular, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Bekele S, Derese Y, Hailu E, Mihret A, Dagne K, Yamuah L, Hailu T, Ayele S, Beyene D, Berg S, Aseffa A. Line-probe assay and molecular typing reveal a potential drug resistant clone of Mycobacterium tuberculosis in Ethiopia. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2018; 4:15. [PMID: 30534412 PMCID: PMC6280437 DOI: 10.1186/s40794-018-0075-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/25/2018] [Indexed: 11/30/2022]
Abstract
Background Antimicrobial resistance is a global concern of increasing significance. Multidrug resistant tuberculosis (MDR-TB) is spreading worldwide. It is important to monitor trends of antimycobacterial resistance. This is particularly true for high TB burden countries such as Ethiopia where disproportionally less drug sensitivity data are reported from. Methods The prevalence of drug resistance was assessed with the line probe assay GenoType MTBDRplus in a set of 161 M. tuberculosis strains that were selected from four common lineages and sub-lineages previously identified in Ethiopia. Most of the tested M. tuberculosis isolates had been genotyped by established Spoligotyping and MIRU-VNTR typing methods. Results The proportion of MDR-TB among the isolates was 3.1%. Mono-resistance was 1.2% to rifampicin and 4.3% to isoniazid, and resistance to either of the two first line drugs was 8.7%. Strains of Lineage 4 had the highest resistance rate (13.6%) followed by Lineage 3 (4.9%). None of the isolates representing Lineages 1 and Lineage 7 were drug resistant. Multidrug resistance among pulmonary TB and TB lymphadenitis clinical isolates was 2.8 and 3.7%, respectively. Drug resistance of strains carrying the most prevalent spoligotype in Ethiopia - SIT149 - was further explored. Stratification by MIRU-VNTR identified one genotype with a high rate of drug resistance against Rifampicin and Isoniazid and circulation of a potential MDR-TB clone is proposed. Conclusion Although the strain selection was not fully randomized, the overall M. tuberculosis drug resistance rate in this strain set was 8.7% while the rate of MDR was 3.1%. In parallel, we identified a sub-lineage that showed a high rate of resistance to both rifampicin and isoniazid. These resistant strains may belong to a clone of M. tuberculosis that is circulating in the highlands of Ethiopia. Electronic supplementary material The online version of this article (10.1186/s40794-018-0075-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiferaw Bekele
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia.,2Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,4Present address: J. Craig Venter Institute, Rockville, MD USA
| | - Yohannes Derese
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Elena Hailu
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Adane Mihret
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Kifle Dagne
- 2Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Lawrence Yamuah
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Tsegaye Hailu
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Samuel Ayele
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Demissew Beyene
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Stefan Berg
- 3Animal and Plant Health Agency, New Haw, Surrey, UK
| | - Abraham Aseffa
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia.,4Present address: J. Craig Venter Institute, Rockville, MD USA
| |
Collapse
|