1
|
Karaarslan S, Kasap E, İpek FN, Akyıldız M. Demonstration of Epstein-Barr Virus by In Situ Hybridization in Papillary Thyroid Carcinomas Developing on Background of Hashimoto's Thyroiditis. Exp Clin Endocrinol Diabetes 2024; 132:469-475. [PMID: 38718832 DOI: 10.1055/a-2322-7355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
AIM This study aimed to demonstrate the role of Epstein-Barr Virus (EBV) in papillary thyroid carcinomas (PTC) developing on the background of Hashimoto's thyroiditis (HT). METHODS The presence of EBV in tumoral tissue, lymphocytes, and peritumoral normal thyroid tissue was investigated using the in situ hybridization method in paraffin blocks. The subtypes of PTC, tumor diameter, TNM stage, multifocality, invasion of thyroid capsule, perineural invasion, and muscular tissue invasion were identified and compared according to EBV involvement. RESULTS Eighty-one patients with HT diagnosis, with 93.8% (n=76) female and 6.2% (n=5) male, were included in the study. Papillary microcarcinoma was the pathological diagnosis in 24.2% (n=15) of the cases. EBV was identified in 58.06% (n=36) of the tumor cells nuclei, 58.06% (n=36) in the tumor cell cytoplasm, 16.12% (n=10) in tumor infiltrative lymphocytes, and 53.2% (n=33) in normal parenchymal follicle epithelial cells (NPFEC). In the T2 stage, the rate of EBV nuclear positivity in patients was significantly higher (p=0.034). The classic variant of papillary carcinoma was accompanied by a significantly higher rate of EBV-negative NPFEC (67.6%, p=0.049). In multifocal tumors, EBV positivity was found to be significantly higher in lymphocytes in the surrounding tissues (58.3%, p=0.034). CONCLUSION A significant increase in EBV positivity in the surrounding tissue lymphocytes was observed in multifocal PTC developing on a background of HT. This suggests a possible association between HT and EBV.
Collapse
Affiliation(s)
- Serap Karaarslan
- Department of Pathology, İzmir Tınaztepe University, İzmir, Turkey
| | - Esin Kasap
- Department of Obstetrics and Gynecology, University of Health Sciences Tepecik Education and Research Hospital, İzmir, Turkey
| | | | - Mahir Akyıldız
- Department of General Surgery, Ege University, İzmir Turkey
| |
Collapse
|
3
|
Capone G, Fasano C, Lucchese G, Calabrò M, Kanduc D. EBV-Associated Cancer and Autoimmunity: Searching for Therapies. Vaccines (Basel) 2015; 3:74-89. [PMID: 26344947 PMCID: PMC4494242 DOI: 10.3390/vaccines3010074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/12/2014] [Accepted: 01/27/2015] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) infects B-, T-, and NK cells and has been associated not only with a wide range of lymphoid malignancies but also with autoimmune diseases such as lupus erythematosus, rheumatoid arthritis and, in particular, multiple sclerosis. Hence, effective immunotherapeutic approaches to eradicate EBV infection might overthrow cancer and autoimmunity incidence. However, currently no effective anti-EBV immunotherapy is available. Here we use the concept that protein immunogenicity is allocated in rare peptide sequences and search the Epstein-Barr nuclear antigen 1 (EBNA1) sequence for peptides unique to the viral protein and absent in the human host. We report on a set of unique EBV EBNA1 peptides that might be used in designing peptide-based therapies able to specifically hitting the virus or neutralizing pathogenic autoantibodies.
Collapse
Affiliation(s)
- Giovanni Capone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy.
| | - Candida Fasano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy.
| | - Guglielmo Lucchese
- Brain and Language Laboratory, Free University of Berlin, 14195 Berlin, Germany.
| | - Michele Calabrò
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy.
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy.
| |
Collapse
|
4
|
Sanpui P, Zheng X, Loeb JC, Bisesi JH, Khan IA, Afrooz ARMN, Liu K, Badireddy AR, Wiesner MR, Ferguson PL, Saleh NB, Lednicky JA, Sabo-Attwood T. Single-walled carbon nanotubes increase pandemic influenza A H1N1 virus infectivity of lung epithelial cells. Part Fibre Toxicol 2014; 11:66. [PMID: 25497303 PMCID: PMC4318452 DOI: 10.1186/s12989-014-0066-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022] Open
Abstract
Background Airborne exposure to nanomaterials from unintended occupational or environmental exposures or as a consequence of product use may lead to adverse health effects. Numerous studies have focused on single-walled carbon nanotubes (SWCNTs) and their ability to cause pulmonary injury related to fibrosis, and cancer; however few studies have addressed their impact on infectious agents, particularly viruses that are known for causing severe disease. Here we have demonstrated the ability of pristine SWCNTs of diverse electronic structure to increase the susceptibility of small airway epithelial cells (SAEC) to pandemic influenza A H1N1 infection and discerned potential mechanisms of action driving this response. Methods Small airway epithelial cells (SAEC) were exposed to three types of SWCNTs with varying electronic structure (SG65, SG76, CG200) followed by infection with A/Mexico/4108/2009 (pH1N1). Cells were then assayed for viral infectivity by immunofluorescence and viral titers. We quantified mRNA and protein levels of targets involved in inflammation and anti-viral activity (INFβ1, IL-8, RANTES/CCL5, IFIT2, IFIT3, ST3GAL4, ST6GAL1, IL-10), localized sialic acid receptors, and assessed mitochondrial function. Hyperspectral imaging analysis was performed to map the SWCNTs and virus particles in fixed SAEC preparations. We additionally performed characterization analysis to monitor SWCNT aggregate size and structure under biological conditions using dynamic light scattering (DLS), static light scattering (SLS). Results Based on data from viral titer and immunofluorescence assays, we report that pre-treatment of SAEC with SWCNTs significantly enhances viral infectivity that is not dependent on SWCNT electronic structure and aggregate size within the range of 106 nm – 243 nm. We further provide evidence to support that this noted effect on infectivity is not likely due to direct interaction of the virus and nanoparticles, but rather a combination of suppression of pro-inflammatory (RANTES) and anti-viral (IFIT2, IFIT3) gene/protein expression, impaired mitochondrial function and modulation of viral receptors by SWCNTs. Conclusions Results of this work reveal the potential for SWCNTs to increase susceptibility to viral infections as a mechanism of adverse effect. These data highlight the importance of investigating the ability of carbon-nanomaterials to modulate the immune system, including impacts on anti-viral mechanisms in lung cells, thereby increasing susceptibility to infectious agents. Electronic supplementary material The online version of this article (doi:10.1186/s12989-014-0066-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pallab Sanpui
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| | - Xiao Zheng
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| | - Julia C Loeb
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| | - Joseph H Bisesi
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| | - Iftheker A Khan
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 E. Dean Keeton Street, Austin, TX, 78712, USA.
| | - A R M Nabiul Afrooz
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 E. Dean Keeton Street, Austin, TX, 78712, USA.
| | - Keira Liu
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, and Center for the Environmental Implications of NanoTechnology, Duke University, 121 Hudson Hall, Box 90287, Durham, NC, 27708, USA.
| | - Appala Raju Badireddy
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, and Center for the Environmental Implications of NanoTechnology, Duke University, 121 Hudson Hall, Box 90287, Durham, NC, 27708, USA.
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, and Center for the Environmental Implications of NanoTechnology, Duke University, 121 Hudson Hall, Box 90287, Durham, NC, 27708, USA.
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, and Center for the Environmental Implications of NanoTechnology, Duke University, 121 Hudson Hall, Box 90287, Durham, NC, 27708, USA.
| | - Navid B Saleh
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 E. Dean Keeton Street, Austin, TX, 78712, USA.
| | - John A Lednicky
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| |
Collapse
|
5
|
Xu CL, Liu L, Zhao WQ, Li JM, Wang RJ, Wang SH, Wang DX, Liu MY, Qiao SS, Wang JW. Anti-N-methyl-D-aspartate receptor encephalitis with serum anti-thyroid antibodies and IgM antibodies against Epstein-Barr virus viral capsid antigen: a case report and one year follow-up. BMC Neurol 2011; 11:149. [PMID: 22126669 PMCID: PMC3247181 DOI: 10.1186/1471-2377-11-149] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 11/29/2011] [Indexed: 12/18/2022] Open
Abstract
Background Anti-N-methyl-D-aspartate receptor encephalitis is an increasingly common autoimmune disorder mediated by antibodies to certain subunit of the N-methyl-D-aspartate receptor. Recent literatures have described anti-thyroid and infectious serology in this encephalitis but without follow-up. Case presentation A 17-year-old Chinese female patient presented with psychiatric symptoms, memory deficits, behavioral problems and seizures. She then progressed through unresponsiveness, dyskinesias, autonomic instability and central hypoventilation during treatment. Her conventional blood work on admission showed high titers of IgG antibodies to thyroglobulin, thyroid peroxidase and IgM antibodies to Epstein-Barr virus viral capsid antigen. An immature ovarian teratoma was found and removal of the tumor resulted in a full recovery. The final diagnosis of anti-N-methyl-D-aspartate receptor encephalitis was made by the identification of anti-N-methyl-D-aspartate receptor antibodies in her cerebral spinal fluid. Pathology studies of the teratoma revealed N-methyl-D-aspartate receptor subunit 1 positive ectopic immature nervous tissue and Epstein-Barr virus latent infection. She was discharged with symptoms free, but titers of anti-thyroid peroxidase and anti-thyroglobulin antibodies remained elevated. One year after discharge, her serum remained positive for anti-thyroid peroxidase and anti-N-methyl-D-aspartate receptor antibodies, but negative for anti-thyroglobulin antibodies and IgM against Epstein-Barr virus viral capsid antigen. Conclusions Persistent high titers of anti-thyroid peroxidase antibodies from admission to discharge and until one year later in this patient may suggest a propensity to autoimmunity in anti- N-methyl-D-aspartate receptor encephalitis and support the idea that neuronal and thyroid autoimmunities represent a pathogenic spectrum. Enduring anti-N-methyl-D-aspartate receptor antibodies from admission to one year follow-up but seroreversion of Epstein-Barr virus viral capsid antigen IgM may raise the important issue of elucidating the triggers and boosters of anti- N-methyl-D-aspartate receptor encephalitis.
Collapse
Affiliation(s)
- Chun-Ling Xu
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, No,95 Yong'An Road, Beijing, 100050, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Maueia C, Costa D, Meggi B, Ismael N, Walle C, Curvo R, Abreu C, Bhatt N, Tanuri A, Jani IV, Ferreira OC. Frequency of human immunodeficiency virus type-2 in hiv infected patients in Maputo City, Mozambique. Virol J 2011; 8:408. [PMID: 21849066 PMCID: PMC3179751 DOI: 10.1186/1743-422x-8-408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/17/2011] [Indexed: 12/14/2022] Open
Abstract
The HIV/AIDS pandemic is primarily caused by HIV-1. Another virus type, HIV-2, is found mainly in West African countries. We hypothesized that population migration and mobility in Africa may have facilitated the introduction and spreading of HIV-2 in Mozambique. The presence of HIV-2 has important implications for diagnosis and choice of treatment of HIV infection. Hence, the aim of this study was to estimate the prevalence of HIV-2 infection and its genotype in Maputo, Mozambique.HIV-infected individuals (N = 1,200) were consecutively enrolled and screened for IgG antibodies against HIV-1 gp41 and HIV-2 gp36 using peptide-based enzyme immunoassays (pepEIA). Specimens showing reactivity on the HIV-2 pepEIA were further tested using the INNO-LIA immunoblot assay and HIV-2 PCR targeting RT and PR genes. Subtype analysis of HIV-2 was based on the protease gene.After screening with HIV-2 pepEIA 1,168 were non-reactive and 32 were reactive to HIV-2 gp36 peptide. Of this total, 30 specimens were simultaneously reactive to gp41 and gp36 pepEIA while two samples reacted solely to gp36 peptide. Only three specimens containing antibodies against gp36 and gp105 on the INNO-LIA immunoblot assay were found to be positive by PCR to HIV-2 subtype A.The proportion of HIV-2 in Maputo City was 0.25% (90%CI 0.01-0.49). The HIV epidemic in Southern Mozambique is driven by HIV-1, with HIV-2 also circulating at a marginal rate. Surveillance program need to improve HIV-2 diagnosis and consider periodical survey aiming to monitor HIV-2 prevalence in the country.
Collapse
Affiliation(s)
| | - Deise Costa
- Laboratório de Virologia Molecular e Animal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Carla Walle
- Centro de Saúde do Alto-Maé, Maputo, Moçambique
| | - Raphael Curvo
- Laboratório de Virologia Molecular e Animal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celina Abreu
- Laboratório de Virologia Molecular e Animal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Amilcar Tanuri
- Laboratório de Virologia Molecular e Animal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Orlando C Ferreira
- Laboratório de Virologia Molecular e Animal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Histocompatibilidade e Criopreservação, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|