1
|
Long N, Deng J, Qiu M, Zhang Y, Wang Y, Guo W, Dai M, Lin L. Inflammatory and pathological changes in Escherichia coli infected mice. Heliyon 2022; 8:e12533. [PMID: 36643320 PMCID: PMC9834738 DOI: 10.1016/j.heliyon.2022.e12533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose Understanding the inflammation and histopathological changes in vivo caused by Escherichia coli infection is of great significance for scientific research and clinical diagnosis. Methods Mice were randomly divided into 6 groups (N = 10) after adaptive feeding, and it challenged by intraperitoneal injection with different concentrations of E. coli ATCC25922. The survival situation within 7 days was recorded, and the half-lethal dose (LD50) was calculated by Karber's method. After the end, the blood, heart, liver, spleen, lung, and kidney of the mice were collected. We detected the concentration of inflammatory cytokines (IL-6, IL-β, and TNF-α) and inducible nitric oxide synthase (iNOS) in serum by ELSIA. Organs were observed by histopathological staining and electron microscope observation. Results The LD50 of mice infected with E. coli was 1.371∗106 CFU/kg. The concentrations of IL-6, IL-β, and TNF-α increased with time after infection in mice, reaching the highest concentration on the 7th day. iNOS was significantly increased on the 1st day of infection, and then decreased over time (P < 0.01). Within a week after infection, the colony counts of the heart, liver, spleen, lung and kidney showed a first decrease, and then reached a surge on the 7th day. Pathological results showed that a small amount of mitochondrial swelling and autophagy were seen in the spleen, lung and kidney tissues of the infected group; and a small amount of secondary lysosomes and autophagy were also seen; but no pathological changes were found in the liver and heart. Conclusion Escherichia coli can cause inflammation and oxidative stress in mice, causing different degrees of damage to the spleen, lung, and kidney tissues, which provides theoretical support for inflammatory and pathological changes caused by Escherichia coli infection in vivo.
Collapse
Affiliation(s)
- Nana Long
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China
| | - Jingzhu Deng
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China
| | - Min Qiu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China
| | - Yanjiao Zhang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China
| | - Yuzhen Wang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China
| | - Wei Guo
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China,Corresponding author.
| | - Lin Lin
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, PR China,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, PR China,Corresponding author.
| |
Collapse
|
2
|
Tong Xie Yao Fang: A Classic Chinese Medicine Prescription with Potential for the Treatment of Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5548764. [PMID: 34211567 PMCID: PMC8208878 DOI: 10.1155/2021/5548764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
The prescription of Tong Xie Yao Fang (TXYF) was derived from the Yuan dynasty “Dan Brook Heart Law,” which was a representative formula for treating liver-spleen disharmony, diarrhea, and abdominal pain. The prescription is composed of four herbs for soothing the liver and strengthening the spleen. TXYF is reportedly capable of eliminating discomfort in ulcerative colitis (UC). This classic formula has been widely used for regulating gastrointestinal motor dysfunction and repairing colon mucosa. This review aims to provide current information on the pharmacology and clinical research of TXYF in the treatment of UC, and to critically appraise that information, in order to guide the future clinical use and experimental study of TXYF in the treatment of UC. We searched online databases including PubMed, CNKI, and Google Scholar for research published between 2010 and 2020 on TXYF and its efficacy in the treatment of UC. The findings indicated that TXYF has anti-inflammatory and immunomodulatory effects, regulates cell signal transduction, brain-gut axis, and intestinal flora in UC, and may promote targeting of bone mesenchymal stem cells (BMSCs) to the colonic mucosa and accelerate healing of the colonic mucosal barrier. In addition, the results of clinical studies showed that TXYF has good efficacy and few adverse reactions in the treatment of UC. Although it has achieved some success, the research is limited by deficiencies; there is a lack of unified standards for the construction of UC animal models and for administration regimen. In addition, the dosage of TXYF is not consistent and lacks pharmacological verification, and clinical trial data are not detailed or sufficiently rigorous. Therefore, a more rigorous, comprehensive, and in-depth study of TXYF in the treatment of UC is needed.
Collapse
|
3
|
Helicobacter pylori-Mediated Immunity and Signaling Transduction in Gastric Cancer. J Clin Med 2020; 9:jcm9113699. [PMID: 33217986 PMCID: PMC7698755 DOI: 10.3390/jcm9113699] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori infection is a leading cause of gastric cancer, which is the second-most common cancer-related death in the world. The chronic inflammatory environment in the gastric mucosal epithelia during H. pylori infection stimulates intracellular signaling pathways, namely inflammatory signals, which may lead to the promotion and progression of cancer cells. We herein report two important signal transduction pathways, the LPS-TLR4 and CagA-MET pathways. Upon H. pylori stimulation, lipopolysaccharide (LPS) binds to toll-like receptor 4 (TLR4) mainly on macrophages and gastric epithelial cells. This induces an inflammatory response in the gastric epithelia to upregulate transcription factors, such as NF-κB, AP-1, and IRFs, all of which contribute to the initiation and progression of gastric cancer cells. Compared with other bacterial LPSs, H. pylori LPS has a unique function of inhibiting the mononuclear cell (MNC)-based production of IL-12 and IFN-γ. While this mechanism reduces the degree of inflammatory reaction of immune cells, it also promotes the survival of gastric cancer cells. The HGF/SF-MET signaling plays a major role in promoting cellular proliferation, motility, migration, survival, and angiogenesis, all of which are essential factors for cancer progression. H. pylori infection may facilitate MET downstream signaling in gastric cancer cells through its CagA protein via phosphorylation-dependent and/or phosphorylation-independent pathways. Other signaling pathways involved in H. pylori infection include EGFR, FAK, and Wnt/β-Catenin. These pathways function in the inflammatory process of gastric epithelial mucosa, as well as the progression of gastric cancer cells. Thus, H. pylori infection-mediated chronic inflammation plays an important role in the development and progression of gastric cancer.
Collapse
|