Fang Z, Xu Q, Wu JQ, Lu SJ, Wang YY, Fang H. A recombinant plasmid of composite cysteine proteinase inhibitor/glyceraldehyde-3-phosphate dehydrogenase gene of periodic Brugia malayi functions on DNA immunity in the host.
Indian J Med Microbiol 2016;
34:146-52. [PMID:
27080764 DOI:
10.4103/0255-0857.180279]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES
Both cysteine proteinase inhibitors (CPIs) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) play important roles in the pathogenesis of parasites and their relationship with the hosts. We constructed a new eukaryotic recombinant expression plasmid pcDNA3.1(+)-BmCPI/BmGAPDH of periodic Brugia malayi for investigation of the DNA vaccine-elicited immune responses.
MATERIALS AND METHODS
We cloned a gene encoding the CPIs and GAPDH from periodic B. malayi into vector pcDNA3.1. The composited plasmid or the control was injected into the tibialis anterior muscle of the hind leg in BALB/c mice, respectively. The target genes were detected by reverse transcription-polymerase chain reaction in muscle tissues. The stimulation index (SI) of T-lymphocyte proliferation and the levels of interferon-gamma (INF-g) and interleukin-4 ( IL-4) in serum were detected by thiazolyl blue tetrazolium blue and enzyme-linked immunosorbent assays.
RESULTS
The pcDNA3.1(+)-BmCPI/BmGAPDH was amplified from muscle tissues of the mice after immunisation. The SI of the immunised group was significantly higher than that of the two control groups (P < 0.05). The levels of INF-g and IL-4 of pcDNA3.1(+)-BmCPI/BmGAPDH group were both higher than those of the two control groups (P < 0.05). The level of INF-g of pcDNA3.1(+)-BmCPI/BmGAPDH group was significantly higher than that of pcDNA3.1(+)-BmCPI/CpG group (P < 0.05).
CONCLUSIONS
We conclude that the recombinant plasmid pcDNA3.1(+)-BmCPI/BmGAPDH could elicit specific humoural and cellular immune responses in mice.
Collapse