1
|
Badiee P, Ghasemi F, Jafarian H. Role of biomarkers in the diagnosis of invasive aspergillosis in immunocompromised patients. Ann Clin Microbiol Antimicrob 2022; 21:44. [PMID: 36320074 PMCID: PMC9628095 DOI: 10.1186/s12941-022-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Invasive aspergillosis is one of the important causes of infection in immunocompromised patients. This study aimed to evaluate the roles of biomarkers in the diagnosis of invasive aspergillosis and their relationship with antifungal stewardship programs. METHODS 190 sera from 52 immunocompromised patients and volunteer individuals were included in this study. 18 immunocompromised volunteers without IA and 34 patients with probable and proven aspergillosis according to the European Organization for Research and Treatment of Cancer and the Mycoses Study Group consensus definitions were entered in this study. The respective sera were evaluated for procalcitonin, soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) levels; white blood cells count (WBC) count, C reactive protein (CRP), lactate dehydrogenase (LDH), and erythrocyte sedimentation rate (ESR) values. Demographic data and clinical characteristics of patients were extracted from their files. RESULTS The male-to-female ratio and mean age of patients were 22/12 and 38.9 years, respectively. The hematologic disorder was the most predisposing factor (29/34, 85.3%). Sensitivity of biomarkers for diagnosis of invasive aspergillosis was 70.6% (cut off value > 190 pg/mL for sTREM-1, 71% (cut off value > 260 pg/mL) for PCT, 85.3% (cut off value > 193 U/L) for LDH, 94.1% (cut off value > 8 mg/l) for CRP, 64.7% (cut off value < 5200 cells/ml) for WBC, and 85.3% (cut off value > 23 mm/h) for ESR. Twelve patients died, with significantly increased sTREM-1 levels and decreased WBC count in them. CONCLUSION According to our data, evaluation of the biomarkers can help in the diagnosis, management, and prediction of the severity of Aspergillus infection, and the rational use of antifungal agents in immunocompromised patients.
Collapse
Affiliation(s)
- Parisa Badiee
- grid.412571.40000 0000 8819 4698Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ghasemi
- grid.412571.40000 0000 8819 4698Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadis Jafarian
- grid.412571.40000 0000 8819 4698Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Pei L, Gao X, Liu W, Feng X, Zhao Z, Lai Y. Lapiferin protects against H1N1 virus-induced pulmonary inflammation by negatively regulating NF-kB signaling. ACTA ACUST UNITED AC 2020; 53:e9183. [PMID: 32901688 PMCID: PMC7485324 DOI: 10.1590/1414-431x20209183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/18/2020] [Indexed: 12/24/2022]
Abstract
H1N1 virus-induced excessive inflammatory response contributes to severe disease and high mortality rates. There is currently no effective strategy against virus infection in lung. The present study evaluated the protective roles of a natural compound, lapiferin, in H1N1 virus-induced pulmonary inflammation in mice and in cultured human bronchial epithelial cells. Initially, Balb/C mice were grouped as Control, H1N1 infection (intranasally infected with 500 plaque-forming units of H1N1 virus), lapiferin (10 mg/kg), and H1N1+lapiferin (n=10/group). Lung histology, expression of inflammatory factors, and survival rates were assessed after 14 days of exposure. Administration of lapiferin significantly alleviated the virus-induced inflammatory infiltrate in lung tissues. Major pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, were decreased at both mRNA and protein levels by lapiferin administration in the lung homogenate. Lapiferin also reduced inflammatory cell numbers in bronchoalveolar fluid. Mechanistically, lapiferin suppressed the transcriptional activity and protein expression of NF-κB p65, causing inhibition on NF-κB signaling. Pre-incubation of human bronchial epithelial cells with an NF-κB signaling specific activator, ceruletide, significantly blunted lapiferin-mediated inhibition of pro-inflammatory cytokines secretion in an air-liquid-interface cell culture experiment. Activation of NF-κB signaling also blunted lapiferin-ameliorated inflammatory infiltrate in lungs. These results suggested that lapiferin was a potent natural compound that served as a therapeutic agent for virus infection in the lung.
Collapse
Affiliation(s)
- Lishu Pei
- Department of Respiration, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xuejin Gao
- Department of Respiration, Xiqing Hospital, Tianjin, China
| | - Wen Liu
- Department of Respiration, Peking University Third Hospital, Beijing, China
| | - Xiao Feng
- Department of Respiration, Peking University Third Hospital, Beijing, China
| | - Zhongquan Zhao
- Department of Respiration, Peking University Third Hospital, Beijing, China
| | - Yanping Lai
- Department of Respiration, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Dai J, Chen Y, Jiang F. Allicin reduces inflammation by regulating ROS/NLRP3 and autophagy in the context of A. fumigatus infection in mice. Gene 2020; 762:145042. [PMID: 32777529 DOI: 10.1016/j.gene.2020.145042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Inhibitory effect of allicin with broad-spectrum antimicrobial activity on A. fumigatus and the regulation mechanism of inflammation and autophagy in vitro and in vivo. METHODS The corresponding concentration of allicin was prepared according to the needs of the experiment. In vitro, 2 ml 5 × 104 of fungal spores suspension was added to the 6-well plate per hole, and different final concentrations of allicin (1 μl/ml, 2.5 μl/ml, 5 μl/ml, 10 μl/ml, 20 μl/ml, 30 μl/ml) were added. The fungal spores were stained by fluorescent dye SYTO 9 (green) every day, and the spore germination inhibition was detected by flow cytometry in different PH. RAW264.7 cells were cultured and stimulated by A. fumigatus spores for 3 h, then allicin solution was added. Then some cells were stained with ROS probe (green) and hochest33342 (blue). The effect of allicin on ROS was observed by fluorescence microscope. The other part of cells extracted protein from cell lysate and detected the effect of allicin on inflammatory factors and autophagy by Western-blotting. The green and red spots of RAW264.7 cells stably transfected with GFP-RFP-LC3 were observed by fluorescence microscopy. In vivo, A. fumigatus spore was injected intratracheally into mice, then allicin was injected intravenously at a concentration of 5 mg/kg/day for 7 consecutive days. The survival status, pulmonary fungal load and weight of mice was recorded continuously for 30 days and detected the changes of lung by pathological examination and immunohistochemistry. RESULTS In vitro, allicin significantly inhibited the spore germination of A. fumigatus within 24 h in a dose-dependent manner and it had a stable inhibition on the spore germination of A. fumigatus in acidic environment. Cell experiments showed that allicin inhibited intracellular spore germination by inhibiting ROS production, inflammation and autophagy. In the animal experiment, the survival rate and body weight of allicin injection group were higher than that of non injection group, while the spore load of lung was lower than that of non injection group (P < 0.05). CONCLUSIONS These results support that allicin reduces inflammation and autophagy resistance to A. fumigatus infection, It also provides a possible treatment for Aspergillus infectious diseases, i.e. early anti-inflammation, antibiotics or drugs that inhibit excessive autophagy.
Collapse
Affiliation(s)
- Jingjing Dai
- Department of Medical Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Ying Chen
- Department of Medical Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China.
| | - Feng Jiang
- Department of Stomatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China.
| |
Collapse
|
4
|
Dantas PHDS, Matos ADO, da Silva Filho E, Silva-Sales M, Sales-Campos H. Triggering receptor expressed on myeloid cells-1 (TREM-1) as a therapeutic target in infectious and noninfectious disease: a critical review. Int Rev Immunol 2020; 39:188-202. [PMID: 32379561 DOI: 10.1080/08830185.2020.1762597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is an innate immune receptor found in the surface of several immune and non-immune cells. Since its first description in 2000, this molecule and its soluble form (sTREM-1) have been implicated in many diseases with infectious and noninfectious origins. As an amplifier of inflammation, the membrane-associated TREM-1 (mTREM-1) isoform induces the production of pro-inflammatory mediators, thus contributing to the pathogenesis of diseases such as sepsis, arthritis, colitis and infections. In this context, many studies have used molecules capable of inhibiting TREM-1 activity as anti-inflammatory drugs. In this regard, a few peptides have been showing promising results in the amelioration of detrimental immune responses. Some commercially available drugs, including corticosteroids and antibiotics, with known anti-inflammatory effects, have also shown activity in TREM-1 signaling. Therefore, considering the potential of this receptor as a therapeutic target, the present review encompasses the main compounds explored so far in TREM-1 modulation, highlighting and critically discussing its effects and major drawbacks of such approaches.
Collapse
Affiliation(s)
| | - Amanda de Oliveira Matos
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Ernandes da Silva Filho
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Marcelle Silva-Sales
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| |
Collapse
|
5
|
Bai G, Wang H, Han W, Cui N. T-Bet Expression Mediated by the mTOR Pathway Influences CD4 + T Cell Count in Mice With Lethal Candida Sepsis. Front Microbiol 2020; 11:835. [PMID: 32431684 PMCID: PMC7214724 DOI: 10.3389/fmicb.2020.00835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
The sustained high morbidity and mortality of Candida sepsis are mainly caused by compromise of host immunity. Clinically, it is often manifested as a significant decrease in CD4+ T cell count, although the mechanism is unclear. We established a lethal mice Candida sepsis model and used Murine Sepsis Score to group mice with different disease severity to establish the influence of T-bet expression on CD4+ T cell count in Candida sepsis. We found that CD4+ T cell count decreased in Candida-infected compared to uninfected mice, and the degree of decrease increased with aggravation of sepsis. Expression of T-bet similarly decreased with worsening of sepsis, but it was significantly enhanced in candidiasis in comparison of naïve state. To clarify its possible mechanism, we measured the activity of mammalian target of rapamycin (mTOR), which is a key regulator of T-bet expression. The mTOR pathway was activated after infection and its activity increased with progression of sepsis. We used mice with T-cell-specific knockout of mTOR or tuberous sclerosis complex (TSC)1 to further inhibit or strengthen the mTOR signaling pathway. We found that mTOR deletion mice had a higher CD4+ T cell count by regulating T-bet expression, and the result in TSC1 deletion mice was reversed. These results demonstrate that T-bet expression mediated by the mTOR pathway influences the CD4+ T cell count in mice with Candida sepsis.
Collapse
Affiliation(s)
- Guangxu Bai
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Han
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| |
Collapse
|
6
|
de Oliveira Matos A, Dos Santos Dantas PH, Figueira Marques Silva-Sales M, Sales-Campos H. The role of the triggering receptor expressed on myeloid cells-1 (TREM-1) in non-bacterial infections. Crit Rev Microbiol 2020; 46:237-252. [PMID: 32326783 DOI: 10.1080/1040841x.2020.1751060] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The triggering receptor expressed on myeloid cells 1 (TREM-1) is a receptor of the innate immune system, expressed mostly by myeloid cells and primarily associated with pro- inflammatory responses. Although the exact nature of its ligands has not yet been fully elucidated, many microorganisms or danger signals have been proposed as inducers of its activation or the secretion of sTREM-1, the soluble form with putative anti-inflammatory effects. In the course of the 20 years since its first description, several studies have investigated the involvement of TREM-1 in bacterial infections. However, the number of studies describing the role of TREM-1 in fungal, viral and parasite-associated infections has only increased in the last few years, showing a diverse contribution of the receptor in these scenarios, with beneficial or detrimental activities depending on the context. Therefore, this review aims to discuss how TREM-1 may influence viral, fungal and parasitic infection outcomes, highlighting its potential as a therapeutic target and biomarker for diagnosis and prognosis of non-bacterial infectious diseases.
Collapse
|
7
|
Zhang H, Zhou X, Chen X, Lin Y, Qiu S, Zhao Y, Tang Q, Liang Y, Zhong X. Rapamycin attenuates Tc1 and Tc17 cell responses in cigarette smoke-induced emphysema in mice. Inflamm Res 2019; 68:957-968. [PMID: 31468083 DOI: 10.1007/s00011-019-01278-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE AND DESIGN Chronic exposure to cigarette smoke promotes airway inflammation and emphysema accompanied by enhanced CD8+ interferon (IFN)-γ+ T(Tc1) and CD8+ interleukin (IL)-17+ T(Tc17) cell responses. The mammalian target of rapamycin (mTOR) has been involved in the pathogenesis of emphysema. Inhibiting mTOR by rapamycin has been reported to alleviate emphysema, but the mechanism is not fully understood. We aimed to explore the effect of rapamycin on Tc1 and Tc17 cell responses induced by cigarette smoke exposure. MATERIALS Male C57BL/6 mice were exposed to cigarette smoke or room air for 24 weeks. Half of the smoke-exposed mice received rapamycin in the last 12 weeks. The severity of emphysema in those mice was evaluated by mean linear intercept (MLI), mean alveolar airspace area (MAA) and destructive index (DI). Bronchoalveolar lavage was collected and analyzed. Phosphorylated (p-) mTOR in CD8+ T cells, Tc1 and Tc17 cells were detected by flow cytometry. The relative expression of p-mTOR in lungs was determined by western blot analysis. IFN-γ and IL-17A levels were detected by enzyme-linked immunosorbent assays. IFN-γ, mTOR and RAR-related orphan receptor (ROR)γt mRNA levels were evaluated by the real-time polymerase chain reaction. RESULTS Elevated p-mTOR expression in CD8+ T cells and lung tissue was accompanied by the enhanced Tc1 and Tc17 cell responses in lungs of mice exposed to cigarette smoke. Rapamycin reduced inflammatory cells in BALF and decreased MLI, DI and MAA in lungs. Rapamycin decreased p-mTOR expression, and down-regulation of mTOR and RORγt mRNA levels along with the attenuation of Tc1 and Tc17 cell responses in mice with emphysema. CONCLUSIONS The mTOR was activated in CD8+ T cells accompanied by the enhanced Tc1 and Tc17 cell responses in cigarette smoke-related pulmonary inflammation. Rapamycin ameliorated emphysema and attenuated Tc1 and Tc17 cell responses probably caused by inhibiting mTOR in cigarette smoke-exposed mice.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Xiu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Xin Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Yuanzhen Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Shilin Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Qiya Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Yi Liang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, China.
| |
Collapse
|
8
|
Wang H, Cui N, Han W, Su LX, Long Y, Liu DW. Accelerated Autophagy of Cecal Ligation and Puncture-Induced Myocardial Dysfunction and Its Correlation with Mammalian Target of Rapamycin Pathway in Rats. Chin Med J (Engl) 2018; 131:1185-1190. [PMID: 29722337 PMCID: PMC5956769 DOI: 10.4103/0366-6999.231522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Recent studies have indicated that autophagy is involved in sepsis-induced myocardial dysfunction. This study aimed to investigate the change of autophagy in cecal ligation and puncture (CLP)-induced myocardium dysfunction and its relationship with mammalian target of rapamycin (mTOR) pathway. Methods: Totally, 12 rats were randomly divided into CLP group or sham-operated (SHAM) group. Cardiac tissues were harvested 18 h after CLP or sham operation. Pathology was detected by hematoxylin and eosin staining, cardiac functions by echocardiography, distribution of microtubule-associated protein light chain 3 type II (LC3II) by immunohistochemical staining, and autophagic vacuoles by transmission electron microscopy. Moreover, phosphorylation of mTOR (p-mTOR), phosphorylation of S6 kinase-1 (PS6K1), and LC3II and p62 expression were measured by western blotting. Pearson's correlation coefficient was used to analyze the correlation of two parameters. Results: The results by pathology and echocardiography revealed that there was obvious myocardial injury in CLP rats (left ventricle ejection fraction: SHAM 0.76 ± 0.06 vs. CLP 0.59 ± 0.11, P < 0.01; fractional shortening: SHAM 0.51 ± 0.09 vs. CLP 0.37 ± 0.06, P < 0.05). We also found that the autophagy process was elevated by CLP, the ratio of LC3II/LC3I was increased (P < 0.05) while the expression of p62 was decreased (P < 0.05) in the CLP rats, and there were also more autophagosomes and autolysosomes in the CLP rats. Furthermore, the mTOR pathway in CLP myocardium was inhibited when compared with the sham-operated rats; p-mTOR (P < 0.01) and PS6K1 (P < 0.05) were both significantly suppressed following CLP challenge. Interestingly, we found that the mTOR pathway was closely correlated with the autophagy processes. In our study, while p-mTOR in the myocardium was significantly correlated with p62 (r = 0.66, P = 0.02), PS6K1 was significantly positively correlated with p62 (r = 0.70, P = 0.01) and negatively correlated with LC3II (r = −0.71, P = 0.01). Conclusions: The autophagy process in the myocardium was accelerated in CLP rats, which was closely correlated with the inhibition of the mTOR pathway.
Collapse
Affiliation(s)
- Hao Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Wen Han
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Long-Xiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Da-Wei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| |
Collapse
|
9
|
Inhibition of the mTOR Pathway Exerts Cardioprotective Effects Partly through Autophagy in CLP Rats. Mediators Inflamm 2018; 2018:4798209. [PMID: 30050390 PMCID: PMC6046132 DOI: 10.1155/2018/4798209] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
Background Sepsis-induced myocardial dysfunction is a severe clinical problem. Recent studies have indicated that autophagy and myocardial energy depletion play a major role in myocardial dysfunction during sepsis, a mechanistic target of rapamycin (mTOR) as a master sensor of energy status and autophagy mediator; however, there are little data describing its role during sepsis in the heart. Methods Cecal ligation and puncture (CLP) or sham operation (SHAM) was performed in rats. After treatment, pathological changes were determined by H&E staining, cardiac functions by echocardiography, the distribution of microtubule-associated protein light chain 3 (LC-3) type II and hypoxia-inducible factor 1α (HIF-1a) by immunohistochemical staining, and autophagic vacuoles by transmission electron microscopy. Moreover, the mTOR signaling pathway and LC3II, p62, and HIF-1a expression were measured by western blotting. Results Rapamycin alleviated the pathological damage of myocardial tissue, attenuated cardiac dysfunction (left ventricular ejection fraction (LVEF), p < 0.05; fractional shortening (FS), p < 0.05), and reduced HIF-1a expression (p < 0.05). Expectedly, rapamycin decreased the activity of the mTOR pathway in both sham-operated rats (p < 0.0001) and CLP rats (p < 0.01). Interestingly, we also found inhibition of the mTOR pathway in CLP rats compared with sham-operated rats; phosphorylation of both mTOR (p < 0.001) and pS6K1 (p < 0.01) was significantly suppressed following CLP challenge. Furthermore, autophagic processes were elevated by CLP; the ratio of LC3II/LC3I (p < 0.05) was increased while p62 expression (p < 0.001) was decreased significantly; there were also more autophagic vacuoles in CLP rats; and rapamycin could further elevate the autophagic processes compared with CLP rats (LC3II/LC3I, p < 0.05; P62, p < 0.05). Conclusion Inhibition of the mTOR pathway has cardioprotective effects on myocardial dysfunction during sepsis induced by CLP, which is partly mediated through autophagy.
Collapse
|