1
|
Tan J, Wang Z, Huang Z, Huang A, Zhang H, Huang L, Song N, Xin G, Jiang K, Sun X. Glutamine maintains the stability of alveolar structure and function after lung transplantation by inhibiting autophagy. Biochem Biophys Res Commun 2024; 727:150308. [PMID: 38968769 DOI: 10.1016/j.bbrc.2024.150308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
Excessive autophagy may lead to degradation and damage of alveolar epithelial cells after lung transplantation, eventually leading to alveolar epithelial cell loss, affecting the structural integrity and function of alveoli. Glutamine (Gln), a nutritional supplement, regulates autophagy through multiple signaling pathways. In this study, we explored the protective role of Gln on alveolar epithelial cells by inhibiting autophagy. In vivo, a rat orthotopic lung transplant model was carried out to evaluate the therapeutic effect of glutamine. Ischemia/reperfusion (I/R) induced alveolar collapse, edema, epithelial cell apoptosis, and inflammation, which led to a reduction of alveolar physiological function, such as an increase in peak airway pressure, and a decrease in lung compliance and oxygenation index. In comparison, Gln preserved alveolar structure and function by reducing alveolar apoptosis, inflammation, and edema. In vitro, a hypoxia/reoxygenation (H/R) cell model was performed to simulate IR injury on mouse lung epithelial (MLE) cells and human lung bronchus epithelial (Beas-2B) cells. H/R impaired the proliferation of epithelial cells and triggered cell apoptosis. In contrast, Gln normalized cell proliferation and suppressed I/R-induced cell apoptosis. The activation of mTOR and the downregulation of autophagy-related proteins (LC3, Atg5, Beclin1) were observed in Gln-treated lung tissues and alveolar epithelial cells. Both in vivo and in vitro, rapamycin, a classical mTOR inhibitor, reversed the beneficial effects of Gln on alveolar structure and function. Taken together, Glnpreserved alveolar structure and function after lung transplantation by inhibiting autophagy.
Collapse
Affiliation(s)
- Jun Tan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhaokai Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhihong Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ai Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huan Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Naicheng Song
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gaojie Xin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiangfu Sun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Wang X, Kong W, Yang R, Yang C. 4-octyl itaconate ameliorates ventilator-induced lung injury. Arch Biochem Biophys 2024; 752:109853. [PMID: 38086523 DOI: 10.1016/j.abb.2023.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Ventilator-induced lung injury (VILI) disturbs the disordered immune system and causes persistent inflammatory damage. 4-octyl itaconate (OI) is a synthetic cell-permeable itaconate derivative with antioxidant and anti-inflammatory effects. In this study, we assessed whether OI protects against VILI. OI was intraperitoneally injected for three days before mechanical ventilation (MV; 20 ml/kg at 70 breaths/min) for 2 h. Mouse lung vascular endothelial cells (MLVECs) were pretreated with OI (62.5, 125, and 250 μM) prior to cyclic stretch for 4 h. We found that OI attenuated VILI and inflammatory response. OI also increased superoxide dismutase, nuclear factor E2-related factor 2, and heme oxygenase-1 levels, and decreased reactive oxygen species and malondialdehyde levels. Furthermore, OI inhibited the expression of NLR family pyrin domain-containing 3 (NLRP3), caspase-1 p20, apoptosis-associated speck-like protein containing a CARD, and N-terminal fragment of gasdermin D. Therefore, OI attenuates VILI, potentially by suppressing oxidative stress and NLRP3 activation.
Collapse
Affiliation(s)
- Xiudan Wang
- Department of Respiratory Medicine, The Third People's Hospital of Jinan, Jinan, Shandong, 250000, PR China
| | - Weijing Kong
- Department of Cardiology, Qingdao Eighth People's Hospital, Qingdao, Shandong, 266100, PR China
| | - Rui Yang
- Department of Cardiology, Qingdao Eighth People's Hospital, Qingdao, Shandong, 266100, PR China
| | - Chunyan Yang
- Department of Pharmacy, Shengli Oilfield Central Hospital, Dongying, 257034, Shandong, PR China.
| |
Collapse
|
3
|
Corrigendum: Role of glutamine in the mediation of E-cadherin, p120-catenin and inflammation in ventilator-induced lung injury. Chin Med J (Engl) 2024; 137:180. [PMID: 38214297 PMCID: PMC10798746 DOI: 10.1097/cm9.0000000000003001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
|
4
|
Cheng J, Yang J, Ma A, Dong M, Yang J, Wang P, Xue Y, Zhou Y, Kang Y. The Effects of Airway Pressure Release Ventilation on Pulmonary Permeability in Severe Acute Respiratory Distress Syndrome Pig Models. Front Physiol 2022; 13:927507. [PMID: 35936889 PMCID: PMC9354663 DOI: 10.3389/fphys.2022.927507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of the study was to compare the effects of APRV and LTV ventilation on pulmonary permeability in severe ARDS.Methods: Mini Bama adult pigs were randomized into the APRV group (n = 5) and LTV group (n = 5). A severe ARDS animal model was induced by the whole lung saline lavage. Pigs were ventilated and monitored continuously for 48 h.Results: Compared with the LTV group, CStat was significantly better (p < 0.05), and the PaO2/FiO2 ratio showed a trend to be higher throughout the period of the experiment in the APRV group. The extravascular lung water index and pulmonary vascular permeability index showed a trend to be lower in the APRV group. APRV also significantly mitigates lung histopathologic injury determined by the lung histopathological injury score (p < 0.05) and gross pathological changes of lung tissues. The protein contents of occludin (p < 0.05), claudin-5 (p < 0.05), E-cadherin (p < 0.05), and VE-cadherin (p < 0.05) in the middle lobe of the right lung were higher in the APRV group than in the LTV group; among them, the contents of occludin (p < 0.05) and E-cadherin (p < 0.05) of the whole lung were higher in the APRV group. Transmission electron microscopy showed that alveolar–capillary barrier damage was more severe in the middle lobe of lungs in the LTV group.Conclusion: In comparison with LTV, APRV could preserve the alveolar–capillary barrier architecture, mitigate lung histopathologic injury, increase the expression of cell junction protein, improve respiratory system compliance, and showed a trend to reduce extravascular lung water and improve oxygenation. These findings indicated that APRV might lead to more profound beneficial effects on the integrity of the alveolar–capillary barrier architecture and on the expression of biomarkers related to pulmonary permeability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Kang
- *Correspondence: Yongfang Zhou, ; Yan Kang,
| |
Collapse
|
5
|
Luo Q, Luo J, Wang Y. YAP Deficiency Attenuates Pulmonary Injury Following Mechanical Ventilation Through the Regulation of M1/M2 Macrophage Polarization. J Inflamm Res 2020; 13:1279-1290. [PMID: 33408500 PMCID: PMC7781043 DOI: 10.2147/jir.s288244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Background Evidences indicate that the balance between macrophage M1 and M2 polarization is essential for the regulation of pulmonary inflammation during mechanical ventilation (MV). Yes-associated protein (YAP) is a key component of the Hippo pathway and was suggested to regulate macrophage polarization. This study was designed to investigate whether YAP contributes to pulmonary inflammation during MV. Methods Wild-type and macrophage YAP knockout mice were mechanically ventilated for 12 hours to induce pulmonary injuries. At the end of MV, animals were sacrificed for pulmonary tissue collection and macrophage isolation. In addition, the induction of macrophage polarization was performed in isolated macrophages with or without YAP overexpression in vitro. Pulmonary injuries, YAP expression, macrophage polarization and cytokines were measured. Results Here, we show that MV induces lung injury together with pulmonary inflammation as well as upregulated YAP expressions in pulmonary macrophages. In addition, our results indicate that YAP deficiency in macrophages attenuates pulmonary injury, accompanied with decreased production of pro-inflammatory cytokines including IL (interleukin)-1β, IL-6 and tumor necrosis factor-alpha (TNF-α). Moreover, both in vivo and in vitro studies indicate that YAP deficiency enhances M2 polarization while inhibits M1 polarization. In contrast, YAP overexpression inhibits the induction of M2 polarization but improves M1 polarization. Conclusion Our results report for the first time that the induction of YAP in macrophages contributes to pulmonary inflammation during MV through the regulation of M1/M2 polarization.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Jing Luo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| |
Collapse
|