1
|
Ge M, Zhang L, Du J, Jin H, Lv B, Huang Y. Sulfenylation of ERK1/2: A novel mechanism for SO 2-mediated inhibition of cardiac fibroblast proliferation. Heliyon 2024; 10:e34260. [PMID: 39092251 PMCID: PMC11292236 DOI: 10.1016/j.heliyon.2024.e34260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Background Endogenous sulfur dioxide (SO2) plays a crucial role in protecting heart from myocardial fibrosis by inhibiting the excessive growth of cardiac fibroblasts. This study aimed to investigate potential mechanisms by which SO2 suppressed myocardial fibrosis. Methods and results Mouse model of angiotensin II (Ang II)-induced cardiac fibrosis and cell model of Ang II-stimulated cardiac fibroblast proliferation were employed. Our findings discovered that SO2 mitigated the aberrant phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) induced by Ang II, leading to a reduction of fibroblast proliferation. Mechanistically, for the first time, we found that SO2 sulfenylated ERK1/2, and inhibited ERK1/2 phosphorylation and cardiac fibroblast proliferation, while a sulfhydryl reducing agent dithiothreitol (DTT) reversed the above effects of SO2. Furthermore, mutant ERK1C183S (cysteine 183 to serine) abolished the sulfenylation of ERK by SO2, thereby preventing the inhibitory effects of SO2 on ERK1 phosphorylation and cardiac fibroblast proliferation. Conclusion Our study suggested that SO2 inhibited cardiac fibroblast proliferation by sulfenylating ERK1/2 and subsequently suppressing ERK1/2 phosphorylation. These new findings might enhance the understanding of the mechanisms underlying myocardial fibrosis and emphasize the potential of SO2 as a novel therapeutic target for myocardial fibrosis.
Collapse
Affiliation(s)
- Mei Ge
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
| | - Lulu Zhang
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
| | - Junbao Du
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Hongfang Jin
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Boyang Lv
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
| | - Yaqian Huang
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
2
|
Li J, Xie Y, Zheng S, He H, Wang Z, Li X, Jiao S, Liu D, Yang F, Zhao H, Li P, Sun Y. Targeting autophagy in diabetic cardiomyopathy: From molecular mechanisms to pharmacotherapy. Biomed Pharmacother 2024; 175:116790. [PMID: 38776677 DOI: 10.1016/j.biopha.2024.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a cardiac microvascular complication caused by metabolic disorders. It is characterized by myocardial remodeling and dysfunction. The pathogenesis of DCM is associated with abnormal cellular metabolism and organelle accumulation. Autophagy is thought to play a key role in the diabetic heart, and a growing body of research suggests that modulating autophagy may be a potential therapeutic strategy for DCM. Here, we have summarized the major signaling pathways involved in the regulation of autophagy in DCM, including Adenosine 5'-monophosphate-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), Forkhead box subfamily O proteins (FOXOs), Sirtuins (SIRTs), and PTEN-inducible kinase 1 (PINK1)/Parkin. Given the significant role of autophagy in DCM, we further identified natural products and chemical drugs as regulators of autophagy in the treatment of DCM. This review may help to better understand the autophagy mechanism of drugs for DCM and promote their clinical application.
Collapse
Affiliation(s)
- Jie Li
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, China
| | - Yingying Xie
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuwen Zheng
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
| | - Haoming He
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhe Wang
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuexi Li
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siqi Jiao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dong Liu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Furong Yang
- Beijing University of Chinese Medicine School of Traditional Chinese Medicine, Beijing, China
| | - Hailing Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Yihong Sun
- Department of Cardiology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
| |
Collapse
|
3
|
Li A, Wu S, Li Q, Wang Q, Chen Y. Elucidating the Molecular Pathways and Therapeutic Interventions of Gaseous Mediators in the Context of Fibrosis. Antioxidants (Basel) 2024; 13:515. [PMID: 38790620 PMCID: PMC11117599 DOI: 10.3390/antiox13050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Fibrosis, a pathological alteration of the repair response, involves continuous organ damage, scar formation, and eventual functional failure in various chronic inflammatory disorders. Unfortunately, clinical practice offers limited treatment strategies, leading to high mortality rates in chronic diseases. As part of investigations into gaseous mediators, or gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), numerous studies have confirmed their beneficial roles in attenuating fibrosis. Their therapeutic mechanisms, which involve inhibiting oxidative stress, inflammation, apoptosis, and proliferation, have been increasingly elucidated. Additionally, novel gasotransmitters like hydrogen (H2) and sulfur dioxide (SO2) have emerged as promising options for fibrosis treatment. In this review, we primarily demonstrate and summarize the protective and therapeutic effects of gaseous mediators in the process of fibrosis, with a focus on elucidating the underlying molecular mechanisms involved in combating fibrosis.
Collapse
Affiliation(s)
- Aohan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Siyuan Wu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qian Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| |
Collapse
|
4
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Targeting MAPK-ERK/JNK pathway: A potential intervention mechanism of myocardial fibrosis in heart failure. Biomed Pharmacother 2024; 173:116413. [PMID: 38461687 DOI: 10.1016/j.biopha.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Myocardial fibrosis is a significant pathological basis of heart failure. Overactivation of the ERK1/2 and JNK1/2 signaling pathways of MAPK family members synergistically promotes the proliferation of myocardial fibroblasts and accelerates the development of myocardial fibrosis. In addition to some small molecule inhibitors and Western drugs, many Chinese medicines can also inhibit the activity of ERK1/2 and JNK1/2, thus slowing down the development of myocardial fibrosis, and are generally safe and effective. However, the specific biological mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis still need to be fully understood, and there is no systematic review of existing drugs and methods to inhibit them from improving myocardial fibrosis. This study aims to summarize the roles and cross-linking mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis and to systematically sort out the small-molecule inhibitors, Western drugs, traditional Chinese medicines, and non-pharmacological therapies that inhibit ERK1/2 and JNK1/2 to alleviate myocardial fibrosis. In the future, we hope to conduct more in-depth research from the perspective of precision-targeted therapy, using this as a basis for developing new drugs that provide new perspectives on the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
5
|
Yang Y, Yuan L, Meng F, Lu D, Che M, Zhou X, Chen G, Ning N, Nan Y. Gancao Xiexin Decoction inhibits gastric carcinoma proliferation and migration by regulating the JAK2/STAT3 signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117241. [PMID: 37777026 DOI: 10.1016/j.jep.2023.117241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of gastric carcinoma (GC) is increasing rapidly. Traditional Chinese Medicine (TCM) plays a unique role in the treatment of GC. At present, Gancao Xiexin Decoction (GCXXD) has been proved to have a good therapeutic effect on diseases of the spleen and stomach system, but relevant molecular mechanisms remain incompletely explained. AIM OF STUDY The mechanism of GCXXD for GC was investigated by network pharmacology and verified by cell experiments. MATERIALS AND METHODS Firstly, the public database was used to identify the core targets and key pathways of GCXXD in treating GC, followed by molecular docking and survival analysis. Subsequently, the effects of GCXXD on human gastric cancer AGS and HGC-27 cells were confirmed by a series of experiments, such as CCK-8, colony formation, apoptosis, cell cycle, wound scratch assay, transwell chamber assay, qRT-PCR and Western blot. RESULTS This study identified quercetin, wogonin, kaempferol, baicalein, sitosterol and beta-sitosterol as key ingredients, along with AKT1, TP53, JUN, STAT3, TNF, MAPK3, HSP90AA1 and EGFR as co targets, and the JAK/STAT signalling pathway as the key pathway. The experimental results showed that GCXXD inhibited the growth of GC cells, increased the apoptosis rate and the ratio of G0/G1 phase cells, and weakened the clone formation rate and inhibited cell migration and invasion. It also reduces the expression of core target genes and downregulates the expression of JAK2, p-JAK2, STAT3, and p-STAT3 proteins. CONCLUSION GCXXD inhibits GC cell growth, reduces clonogenic capacity, induces apoptosis, blocks the cell cycle, and decreases cell migration and invasion rates by inhibiting the JAK2/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Doudou Lu
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous, China
| | - Mengying Che
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xin Zhou
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Na Ning
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
6
|
Zhao J, Wu Q, Yang T, Nie L, Liu S, Zhou J, Chen J, Jiang Z, Xiao T, Yang J, Chu C. Gaseous signal molecule SO 2 regulates autophagy through PI3K/AKT pathway inhibits cardiomyocyte apoptosis and improves myocardial fibrosis in rats with type II diabetes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:541-556. [PMID: 36302628 PMCID: PMC9614393 DOI: 10.4196/kjpp.2022.26.6.541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
Myocardial fibrosis is a key link in the occurrence and development of diabetic cardiomyopathy. Its etiology is complex, and the effect of drugs is not good. Cardiomyocyte apoptosis is an important cause of myocardial fibrosis. The purpose of this study was to investigate the effect of gaseous signal molecule sulfur dioxide (SO2) on diabetic myocardial fibrosis and its internal regulatory mechanism. Masson and TUNEL staining, Western-blot, transmission electron microscopy, RT-qPCR, immunofluorescence staining, and flow cytometry were used in the study, and the interstitial collagen deposition, autophagy, apoptosis, and changes in phosphatidylinositol 3-kinase (PI3K)/AKT pathways were evaluated from in vivo and in vitro experiments. The results showed that diabetic myocardial fibrosis was accompanied by cardiomyocyte apoptosis and down-regulation of endogenous SO2-producing enzyme aspartate aminotransferase (AAT)1/2. However, exogenous SO2 donors could up-regulate AAT1/2, reduce apoptosis of cardiomyocytes induced by diabetic rats or high glucose, inhibit phosphorylation of PI3K/AKT protein, up-regulate autophagy, and reduce interstitial collagen deposition. In conclusion, the results of this study suggest that the gaseous signal molecule SO2 can inhibit the PI3K/AKT pathway to promote cytoprotective autophagy and inhibit cardiomyocyte apoptosis to improve myocardial fibrosis in diabetic rats. The results of this study are expected to provide new targets and intervention strategies for the prevention and treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Junxiong Zhao
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China,Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Qian Wu
- Department of General Practice, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Ting Yang
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China,School of Pharmaceutical Science of University of South China, Hengyang 421000, China
| | - Liangui Nie
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Shengquan Liu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Jia Zhou
- Department of Ultrasound Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Jian Chen
- Department of Critical Care Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Zhentao Jiang
- Department of Cardiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Ting Xiao
- Department of Cardiology, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guang-dong Medical University, Shenzhen 518000, China,Ting Xiao, E-mail:
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China,Jun Yang, E-mail:
| | - Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China,Correspondence Chun Chu, E-mail:
| |
Collapse
|
7
|
Huang Y, Zhang H, Lv B, Tang C, Du J, Jin H. Sulfur Dioxide: Endogenous Generation, Biological Effects, Detection, and Therapeutic Potential. Antioxid Redox Signal 2022; 36:256-274. [PMID: 34538110 DOI: 10.1089/ars.2021.0213] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Previously, sulfur dioxide (SO2) was recognized as an air pollutant. However, it is found to be endogenously produced in mammalian tissues. As a new gasotransmitter, SO2 is involved in regulating the structure and function of blood vessels, heart, lung, gastrointestinal tract, nervous system, etc.Recent Advances: Increasing evidence showed that endogenous SO2 regulates cardiovascular physiological processes, such as blood pressure control, vasodilation, maintenance of the normal vascular structure, and cardiac negative inotropy. Under pathological conditions including hypertension, atherosclerosis, vascular calcification, aging endothelial dysfunction, myocardial injury, myocardial hypertrophy, diabetic myocardial fibrosis, sepsis-induced cardiac dysfunction, pulmonary hypertension, acute lung injury, colitis, epilepsy-related brain injury, depression and anxiety, and addictive drug reward memory consolidation, endogenous SO2 protects against the pathological changes via different molecular mechanisms and the disturbed SO2/aspartate aminotransferase pathway is likely involved in the mechanisms for the earlier mentioned pathologic processes. Critical Issues: A comprehensive understanding of the biological effects of endogenous SO2 is extremely important for the development of novel SO2 therapy. In this review, we summarized the biological effects, mechanism of action, SO2 detection methods, and its related prodrugs. Future Directions: Further studies should be conducted to understand the effects of endogenous SO2 in various physiological and pathophysiological processes and clarify its underlying mechanisms. More efficient and accurate SO2 detection methods, as well as specific and effective SO2-releasing systems should be designed for the treatment and prevention of clinical related diseases. The translation from SO2 basic medical research to its clinical application is also worthy of further study. Antioxid. Redox Signal. 36, 256-274.
Collapse
Affiliation(s)
- Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
8
|
Lv B, Peng H, Qiu B, Zhang L, Ge M, Bu D, Li K, Yu X, Du J, Yang L, Tang C, Huang Y, Du J, Jin H. Sulphenylation of CypD at Cysteine 104: A Novel Mechanism by Which SO2 Inhibits Cardiomyocyte Apoptosis. Front Cell Dev Biol 2022; 9:784799. [PMID: 35118072 PMCID: PMC8805922 DOI: 10.3389/fcell.2021.784799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: The study was designed to explore the role of endogenous gaseous signaling molecule sulfur dioxide (SO2) in the control of cardiomyocyte apoptosis and its molecular mechanisms.Methods: Neonatal mouse cardiac myocytes (NMCMs) and H9c2 cells were used in the cell experiments. The endogenous SO2 pathway including SO2 level and the expression of SO2-generating enzyme aspartate aminotransferase 1/2 (AAT1/2) were detected in NMCMs. The apoptosis of cardiomyocytes was examined by a TUNEL assay. The cleavage and the activity of apoptotic proteins caspase9 and caspase3 were measured. The content of ATP, the opening of mitochondrial permeability transition pore (mPTP), and the cytochrome c (cytc) leakage were detected by immunofluorescence. The sulphenylation of cyclophilin-D (CypD) was detected by biotin switch analysis. The four CypD mutant plasmids in which cysteine sites were mutated to serine were constructed to identify the SO2-affected site in vitro.Results: ISO down-regulated the endogenous SO2/AAT pathway of cardiomyocytes in association with a significant increase in cardiomyocyte apoptosis, demonstrated by the increases in apoptosis, cleaved-caspase3/caspase3 ratio, and caspase3 activity. Furthermore, ISO significantly reduced ATP production in H9c2 cells, but the supplement of SO2 significantly restored the content of ATP. ISO stimulated mPTP opening, resulting in an increase in the release of cytc, which further increased the ratio of cleaved caspase9/caspase9 and enhanced the protein activity of caspase9. While, the supplementation of SO2 reversed the above effects. Mechanistically, SO2 did not affect CypD protein expression, but sulphenylated CypD and inhibited mPTP opening, resulting in an inhibition of cardiomyocyte apoptosis. The C104S mutation in CypD abolished SO2-induced sulphenylation of CypD, and thereby blocked the inhibitory effect of SO2 on the mPTP opening and cardiomyocyte apoptosis.Conclusion: Endogenous SO2 sulphenylated CypD at Cys104 to inhibit mPTP opening, and thus protected against cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Bingquan Qiu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lulu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Mei Ge
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Dingfang Bu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Jiantong Du
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- *Correspondence: Yaqian Huang, ; Junbao Du, ; Hongfang Jin,
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
- *Correspondence: Yaqian Huang, ; Junbao Du, ; Hongfang Jin,
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- *Correspondence: Yaqian Huang, ; Junbao Du, ; Hongfang Jin,
| |
Collapse
|
9
|
Abstract
Sulfur dioxide (SO2) was previously known as a harmful gas in air pollution. Recently, it was reported that SO2 can be endogenously generated in cardiovascular tissues. Many studies have revealed that endogenous SO2 has important physiological and pathophysiological significance and pharmacological potential. As a novel gasotransmitter, SO2 has important regulatory effects on the heart. It has a dose-dependent negative inotropic effect on cardiac function, in which L-type calcium channels are involved. SO2 can also attenuate myocardial injury caused by various harmful stimuli and play an important role in myocardial ischemia-reperfusion injury and myocardial hypertrophy. These effects are thought to be linked to its ability to reduce inflammation and as an antioxidant. In addition, SO2 regulates cardiomyocyte apoptosis and autophagy. Therefore, endogenous SO2 plays an important role in maintaining cardiovascular system homeostasis. In the present review, the literature concerning the metabolism of endogenous SO2, its cardiac toxicological effects and physiological regulatory effects, mechanisms for SO2-mediated myocardial protection and its pharmacological applications are summarized and discussed.
Collapse
|
10
|
Cai H, Wang X. Effect of sulfur dioxide on vascular biology. Histol Histopathol 2020; 36:505-514. [PMID: 33319344 DOI: 10.14670/hh-18-290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gasotransmitters, such as nitric oxide, carbon monoxide and hydrogen sulfide, can be generated endogenously. These gasotransmitters play important roles in vascular biology, including vasorelaxation and inhibition of vascular smooth muscle cell (VSMC) proliferation. In recent years, sulfur dioxide (SO₂) has been considered as a fourth gasotransmitter. SO₂ is present in air pollution. Moreover, SO₂ toxicity, including oxidative stress and DNA damage, has been extensively reported in previous studies. Recent studies have shown that SO₂ can be endogenously generated in various organs and vascular tissues, where it regulates vascular tone, vascular smooth cell proliferation and collagen synthesis. SO₂ can decrease blood pressure in rats, inhibit smooth muscle cell proliferation and collagen accumulation and promote collagen degradation, and improve vascular remodelling. SO₂ can decrease cardiovascular atherosclerotic plaques by enhancing the antioxidant effect and upregulating nitric oxide/nitric oxide synthase and hydrogen sulfide/cystathionine-γ-lyase pathways. SO₂ can also ameliorate vascular calcification via the transforming growth factor - β1/Smad pathway. The effect of SO₂ on vascular regulation has attracted great interest. SO₂ may be a novel mediator in vascular biology.
Collapse
Affiliation(s)
- Huijun Cai
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Xinbao Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
11
|
García-Villén F, Sánchez-Espejo R, Borrego-Sánchez A, Cerezo P, Cucca L, Sandri G, Viseras C. Correlation between Elemental Composition/Mobility and Skin Cell Proliferation of Fibrous Nanoclay/Spring Water Hydrogels. Pharmaceutics 2020; 12:E891. [PMID: 32962099 PMCID: PMC7559572 DOI: 10.3390/pharmaceutics12090891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 11/20/2022] Open
Abstract
Inorganic hydrogels formulated with spring waters and clay minerals are used to treat musculoskeletal disorders and skin affections. Their underlying mechanism of action for skin disorders is not clear, although it is usually ascribed to the chemical composition of the formulation. The aim of this study was to assess the composition and in vitro release of elements with potential wound healing effects from hydrogels prepared with two nanoclays and natural spring water. In vitro Franz cell studies were used and the element concentration was measured by inductively coupled plasma techniques. Biocompatibility studies were used to evaluate the potential toxicity of the formulation against fibroblasts. The studied hydrogels released elements with known therapeutic interest in wound healing. The released ratios of some elements, such as Mg:Ca or Zn:Ca, played a significant role in the final therapeutic activity of the formulation. In particular, the proliferative activity of fibroblasts was ascribed to the release of Mn and the Zn:Ca ratio. Moreover, the importance of formulative studies is highlighted, since it is the optimal combination of the correct ingredients that makes a formulation effective.
Collapse
Affiliation(s)
- Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
| | - Rita Sánchez-Espejo
- Andalusian Institute of Earth Sciences, CSIC-UGR (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| | - Ana Borrego-Sánchez
- Andalusian Institute of Earth Sciences, CSIC-UGR (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| | - Pilar Cerezo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
| | - Lucia Cucca
- Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy;
| | - Giuseppina Sandri
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy;
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (F.G.-V.); (P.C.)
- Andalusian Institute of Earth Sciences, CSIC-UGR (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain; (R.S.-E.); (A.B.-S.)
| |
Collapse
|
12
|
Endothelin-1 Downregulates Sulfur Dioxide/Aspartate Aminotransferase Pathway via Reactive Oxygen Species to Promote the Proliferation and Migration of Vascular Smooth Muscle Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9367673. [PMID: 32089786 PMCID: PMC7008293 DOI: 10.1155/2020/9367673] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023]
Abstract
The regulatory mechanisms for proliferation and migration of vascular smooth muscle cells have not yet been clear. The present study was designed to investigate whether and how endothelin-1 (ET-1) impacted the generation of endogenous sulfur dioxide (SO2) in rat vascular smooth muscle cell (VSMC) proliferation and migration. Primary VSMCs and purified aspartate aminotransferase (AAT) protein were used in this study. We found that in the presence of ET-1, the expression of PCNA and Ki-67 was upregulated and the migration of VSMCs was promoted, while the AAT activity and SO2 levels in VSMCs were reduced without any changes in AAT1 and AAT2 expression. SO2 supplementation successfully prevented the ET-1-facilitated expression of PCNA and Ki-67 and the migration of VSMCs. Interestingly, ET-1 significantly increased reactive oxygen species (ROS) production in association with SO2/AAT pathway downregulation in VSMCs compared with controls, while the ROS scavenger N-acetyl-L-cysteine (NAC) and the antioxidant glutathione (GSH) significantly abolished the ET-1-stimulated downregulation of the SO2/AAT pathway. Moreover, the AAT activity was reduced in purified protein after the treatment for 2 h. However, NAC and GSH blocked the hydrogen peroxide-induced AAT activity reduction. In conclusion, our results suggest that ET-1 results in the downregulation of the endogenous SO2/AAT pathway via ROS generation to enhance the proliferation and migration of VSMCs.
Collapse
|
13
|
Zhu Z, Zhang L, Chen Q, Li K, Yu X, Tang C, Kong W, Jin H, Du J, Huang Y. Macrophage-derived sulfur dioxide is a novel inflammation regulator. Biochem Biophys Res Commun 2020; 524:916-922. [PMID: 32057367 DOI: 10.1016/j.bbrc.2020.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Macrophage-mediated inflammation is a key pathophysiological component of cardiovascular diseases, but the underlying mechanisms by which the macrophage regulates inflammation have been unclear. In our study, we, for the first time, showed an endogenous sulfur dioxide (SO2) production in RAW267.4 macrophages by using HPLC and SO2-specific fluorescent probe assays. Moreover, the endogenous SO2 generating enzyme aspartate aminotransferase (AAT) was found to be expressed by the macrophages. Furthermore, we showed that AAT2 knockdown triggered spontaneous macrophage-mediated inflammation, as represented by the increased TNF-α and IL-6 levels and the enhanced macrophage chemotaxis; these effects could be reversed by the treatment with a SO2 donor. Mechanistically, AAT2 knockdown activated the NF-κB signaling pathway in macrophages, while SO2 successfully rescued NF-κB activation. In contrast, forced AAT2 expression reversed AngII-induced NF-κB activation and subsequent macrophage inflammation. Moreover, treatment with a SO2 donor also alleviated macrophage infiltration in AngII-treated mouse hearts. Collectively, our data suggest that macrophage-derived SO2 is an important regulator of macrophage activation and it acts as an endogenous "on-off switch" in the control of macrophage activation. This knowledge might enable a new therapeutic strategy for cardiovascular diseases.
Collapse
Affiliation(s)
- Zhigang Zhu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lulu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qinghua Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
14
|
Li YL, Hao WJ, Chen BY, Chen J, Li GQ. Cardiac Fibroblast-Specific Activating Transcription Factor 3 Promotes Myocardial Repair after Myocardial Infarction. Chin Med J (Engl) 2018; 131:2302-2309. [PMID: 30246716 PMCID: PMC6166466 DOI: 10.4103/0366-6999.241794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Myocardial ischemia injury is one of the leading causes of death and disability worldwide. Cardiac fibroblasts (CFs) have central roles in modulating cardiac function under pathophysiological conditions. Activating transcription factor 3 (ATF3) plays a self-protective role in counteracting CF dysfunction. However, the precise function of CF-specific ATF3 during myocardial infarction (MI) injury/repair remains incompletely understood. The aim of this study was to determine whether CF-specific ATF3 affected cardiac repair after MI. Methods: Fifteen male C57BL/6 wild-type mice were performed with MI operation to observe the expression of ATF3 at 0, 0.5, 1.0, 3.0, and 7.0 days postoperation. Model for MI was constructed in ATF3TGfl/flCol1a2-Cre+ (CF-specific ATF3 overexpression group, n = 5) and ATF3TGfl/flCol1a2-Cre− male mice (without CF-specific ATF3 overexpression group, n = 5). In addition, five mice of ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre− were subjected to sham MI operation. Heart function was detected by ultrasound and left ventricular remodeling was observed by Masson staining (myocardial fibrosis area was detected by blue collagen deposition area) at the 28th day after MI surgery in ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre− mice received sham or MI operation. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect cell proliferation/cell cycle-related gene expression in cardiac tissue. BrdU staining was used to detect fibroblast proliferation. Results: After establishment of an MI model, we found that ATF3 proteins were increased in the heart of mice after MI surgery and dominantly expressed in CFs. Genetic overexpression of ATF3 in CFs (ATF3TGfl/flCol1a2-Cre+ group) resulted in an improvement in the heart function as indicated by increased cardiac ejection fraction (41.0% vs. 30.5%, t = 8.610, P = 0.001) and increased fractional shortening (26.8% vs. 18.1%, t = 7.173, P = 0.002), which was accompanied by a decrease in cardiac scar area (23.1% vs. 11.0%, t = 8.610, P = 0.001). qRT-PCR analysis of CFs isolated from ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre− ischemic hearts revealed a distinct transcriptional profile in ATF3-overexpressing CFs, displaying pro-proliferation properties. BrdU-positive cells significantly increased in ATF3-overexpressing CFs than control CFs under angiotensin II stimuli (11.5% vs. 6.8%, t = 31.599, P = 0.001) or serum stimuli (31.6% vs. 20.1%, t = 31.599, P = 0.001). The 5(6)-carboxyfluorescein N-hydroxysuccinimidyl ester assay showed that the cell numbers of the P2 and P3 generations were higher in the ATF3-overexpressing CFs at 24 h (P2: 91.6% vs. 71.8%, t = 8.465, P = 0.015) and 48 h (P3: 81.6% vs. 51.1%, t = 9.029, P = 0.012) after serum stimulation. Notably, ATF3 overexpression-induced CF proliferation was clearly increased in the heart after MI injury. Conclusions: We identify that CF-specific ATF3 might contribute to be MI repair through upregulating the expression of cell cycle/proliferation-related genes and enhancing cell proliferation.
Collapse
Affiliation(s)
- Yu-Lin Li
- Key Laboratory of Remodeling-Related Cardiovascular Disease (Ministry of Education), Beijing Anzhen Hospital Affiliated to Captital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Wen-Jing Hao
- Key Laboratory of Remodeling-Related Cardiovascular Disease (Ministry of Education), Beijing Anzhen Hospital Affiliated to Captital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Bo-Ya Chen
- Key Laboratory of Remodeling-Related Cardiovascular Disease (Ministry of Education), Beijing Anzhen Hospital Affiliated to Captital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jing Chen
- Key Laboratory of Remodeling-Related Cardiovascular Disease (Ministry of Education), Beijing Anzhen Hospital Affiliated to Captital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Guo-Qi Li
- Key Laboratory of Remodeling-Related Cardiovascular Disease (Ministry of Education), Beijing Anzhen Hospital Affiliated to Captital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|