1
|
He L. Biomaterials for Regenerative Cranioplasty: Current State of Clinical Application and Future Challenges. J Funct Biomater 2024; 15:84. [PMID: 38667541 PMCID: PMC11050949 DOI: 10.3390/jfb15040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Acquired cranial defects are a prevalent condition in neurosurgery and call for cranioplasty, where the missing or defective cranium is replaced by an implant. Nevertheless, the biomaterials in current clinical applications are hardly exempt from long-term safety and comfort concerns. An appealing solution is regenerative cranioplasty, where biomaterials with/without cells and bioactive molecules are applied to induce the regeneration of the cranium and ultimately repair the cranial defects. This review examines the current state of research, development, and translational application of regenerative cranioplasty biomaterials and discusses the efforts required in future research. The first section briefly introduced the regenerative capacity of the cranium, including the spontaneous bone regeneration bioactivities and the presence of pluripotent skeletal stem cells in the cranial suture. Then, three major types of biomaterials for regenerative cranioplasty, namely the calcium phosphate/titanium (CaP/Ti) composites, mineralised collagen, and 3D-printed polycaprolactone (PCL) composites, are reviewed for their composition, material properties, and findings from clinical trials. The third part discusses perspectives on future research and development of regenerative cranioplasty biomaterials, with a considerable portion based on issues identified in clinical trials. This review aims to facilitate the development of biomaterials that ultimately contribute to a safer and more effective healing of cranial defects.
Collapse
Affiliation(s)
- Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
3
|
Moncal KK, Gudapati H, Godzik KP, Heo DN, Kang Y, Rizk E, Ravnic DJ, Wee H, Pepley DF, Ozbolat V, Lewis GS, Moore JZ, Driskell RR, Samson TD, Ozbolat IT. Intra-Operative Bioprinting of Hard, Soft, and Hard/Soft Composite Tissues for Craniomaxillofacial Reconstruction. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2010858. [PMID: 34421475 PMCID: PMC8376234 DOI: 10.1002/adfm.202010858] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 05/20/2023]
Abstract
Reconstruction of complex craniomaxillofacial (CMF) defects is challenging due to the highly organized layering of multiple tissue types. Such compartmentalization necessitates the precise and effective use of cells and other biologics to recapitulate the native tissue anatomy. In this study, intra-operative bioprinting (IOB) of different CMF tissues, including bone, skin, and composite (hard/soft) tissues, is demonstrated directly on rats in a surgical setting. A novel extrudable osteogenic hard tissue ink is introduced, which induced substantial bone regeneration, with ≈80% bone coverage area of calvarial defects in 6 weeks. Using droplet-based bioprinting, the soft tissue ink accelerated the reconstruction of full-thickness skin defects and facilitated up to 60% wound closure in 6 days. Most importantly, the use of a hybrid IOB approach is unveiled to reconstitute hard/soft composite tissues in a stratified arrangement with controlled spatial bioink deposition conforming the shape of a new composite defect model, which resulted in ≈80% skin wound closure in 10 days and 50% bone coverage area at Week 6. The presented approach will be absolutely unique in the clinical realm of CMF defects and will have a significant impact on translating bioprinting technologies into the clinic in the future.
Collapse
Affiliation(s)
- Kazim K Moncal
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hemanth Gudapati
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin P Godzik
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dong N Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youngnam Kang
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elias Rizk
- Department of Neurosurgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Dino J Ravnic
- Department of Surgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Hwabok Wee
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - David F Pepley
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Veli Ozbolat
- Mechanical Engineering Department, Ceyhan Engineering Faculty, Cukurova University, Adana 01950, Turkey
| | - Gregory S Lewis
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jason Z Moore
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Thomas D Samson
- Department of Neurosurgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Hydroxyapatite cranioplasty: a retrospective evaluation of osteointegration in 17 cases. Acta Neurochir (Wien) 2018; 160:2117-2124. [PMID: 30276548 DOI: 10.1007/s00701-018-3694-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Cranial reconstruction with autologous bone is still the gold standard although several biomaterials are available to re-establish the integrity of the cranial vault. Due to their biological and morphological characteristics, hydroxyapatite implants show promising results in small clinical cohort studies, especially within the paediatric population. Its biocompatibility and osteoconductivity should allow the formation of osseous bridging at the skull-prosthesis interface. OBJECTIVE To examine the possible occurrence of osteointegration and to quantify it. METHODS A retrospective study of patients with a hydroxyapatite implant from 2010 to 2014 at our neurosurgical department was conducted. Demographic, surgical and radiological data were studied. A senior neuroradiologist, a staff member neurosurgeon and a resident neurosurgeon independently performed the radiological evaluation. A new software analysis technique was developed to objectively quantify the degree of osteointegration. RESULTS Seventeen implants were evaluated with an average patient age of 39 years and a mean follow-up of 155 weeks. Through radiologic evaluation, osseous bridging was deemed higher than 50% in six prostheses and higher than 75% in three. In five patients, no osteointegration could be seen. The remaining patients exhibited sparse signs of osteointegration, estimated between 10 and 50%. Software analysis showed an average osteointegration ratio of 37.4% with a 400-HU filter and 27.3% with a 700-HU filter. CONCLUSION In this small retrospective study of cranial hydroxyapatite implants, osteointegration did occur and to a degree of more than 50% in 1/3 of the patients.
Collapse
|