1
|
Mohd Zainudin NH, Talik Sisin NN, Rashid RA, Jamil A, Khairil Anuar MA, Razak KA, Abdullah R, Rahman WN. Cellular analysis on the radiation induced bystander effects due to bismuth oxide nanoparticles with 6 MV photon beam radiotherapy. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Verma N, Tiku AB. Role of mTOR pathway in modulation of radiation induced bystander effects. Int J Radiat Biol 2021; 98:173-182. [PMID: 34855567 DOI: 10.1080/09553002.2022.2013567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Radiation-induced bystander effect (RIBE) is considered as an important consequence of radiation exposure. Based on the type of effect induced, it has important implications in radiation therapy. mTOR pathway, a key regulator of cell survival, plays an important role in radiation-induced damages. However, the role of mTOR signaling in the modulation of RIBE is still unclear. We evaluated the role of mTOR pathway in RIBE and its relationship with the radiation response of target cells. MATERIALS AND METHODS Direct and bystander effects were evaluated by using clonogenic and MTT assay in five different cell lines. Expression of mTOR pathway proteins in directly targeted and bystander cells was studied using western blotting. RESULTS Among five different cell lines naïve HT1080 and A549 cells exhibited proliferative bystander effect induced by conditioned media and irradiated conditioned media, while no effect was observed in other cell lines. Everolimus significantly abolished the proliferative bystander effect induced in naïve cells. CONCLUSIONS These results suggested that the mTOR pathway plays an important role in RIBEs. These effects are cell type-specific and depending on the radiosensitivity of the target cells, therapeutic benefits of radiation may be modulated by treatment with mTOR inhibitors.
Collapse
Affiliation(s)
- Neha Verma
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashu Bhan Tiku
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Mukherjee S, Chakraborty A. Radiation-induced bystander phenomenon: insight and implications in radiotherapy. Int J Radiat Biol 2019; 95:243-263. [PMID: 30496010 DOI: 10.1080/09553002.2019.1547440] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sharmi Mukherjee
- Stress biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal, India
| | - Anindita Chakraborty
- Stress biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Yahyapour R, Salajegheh A, Safari A, Amini P, Rezaeyan A, Amraee A, Najafi M. Radiation-induced Non-targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy. J Biomed Phys Eng 2018; 8:435-446. [PMID: 30568933 PMCID: PMC6280111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022]
Abstract
Bystander or non-targeted effect is known to be an interesting phenomenon in radiobiology. The genetic consequences of bystander effect on non-irradiated cells have shown that this phenomenon can be considered as one of the most important factors involved in secondary cancer after exposure to ionizing radiation. Every year, millions of people around the world undergo radiotherapy in order to cure different types of cancers. The most crucial aim of radiotherapy is to improve treatment efficiency by reducing early and late effects of exposure to clinical doses of radiation. Secondary cancer induction resulted from exposure to high doses of radiation during treatment can reduce the effectiveness of this modality for cancer treatment. The perception of carcinogenesis risk of bystander effects and factors involved in this phenomenon might help reduce secondary cancer incidence years after radiotherapy. Different modalities such as radiation LET, dose and dose rate, fractionation, types of tissue, gender of patients, etc. may be involved in carcinogenesis risk of bystander effects. Therefore, selecting an appropriate treatment modality may improve cost-effectiveness of radiation therapy as well as the quality of life in survived patients. In this review, we first focus on the carcinogenesis evidence of non-targeted effects in radiotherapy and then review physical and biological factors that may influence the risk of secondary cancer induced by this phenomenon.
Collapse
Affiliation(s)
- R. Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - A. Salajegheh
- Department of Radiology, School of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A. Safari
- Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - P. Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A. Amraee
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M. Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
5
|
Decrock E, Hoorelbeke D, Ramadan R, Delvaeye T, De Bock M, Wang N, Krysko DV, Baatout S, Bultynck G, Aerts A, Vinken M, Leybaert L. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1099-1120. [DOI: 10.1016/j.bbamcr.2017.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
|
6
|
Bigdeli B, Goliaei B, Masoudi-Khoram N, Jooyan N, Nikoofar A, Rouhani M, Haghparast A, Mamashli F. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis. Toxicol Appl Pharmacol 2016; 313:180-194. [DOI: 10.1016/j.taap.2016.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/09/2016] [Accepted: 10/24/2016] [Indexed: 01/17/2023]
|
7
|
Faqihi F, Neshastehriz A, Soleymanifard S, Shabani R, Eivazzadeh N. Radiation-induced bystander effect in non-irradiated glioblastoma spheroid cells. JOURNAL OF RADIATION RESEARCH 2015; 56:777-783. [PMID: 26160180 PMCID: PMC4577008 DOI: 10.1093/jrr/rrv039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/02/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
Radiation-induced bystander effects (RIBEs) are detected in cells that are not irradiated but receive signals from treated cells. The present study explored these bystander effects in a U87MG multicellular tumour spheroid model. A medium transfer technique was employed to induce the bystander effect, and colony formation assay was used to evaluate the effect. Relative changes in expression of BAX, BCL2, JNK and ERK genes were analysed using RT-PCR to investigate the RIBE mechanism. A significant decrease in plating efficiency was observed for both bystander and irradiated cells. The survival fraction was calculated for bystander cells to be 69.48% and for irradiated cells to be 34.68%. There was no change in pro-apoptotic BAX relative expression, but anti-apoptotic BCL2 showed downregulation in both irradiated and bystander cells. Pro-apoptotic JNK in bystander samples and ERK in irradiated samples were upregulated. The clonogenic survival data suggests that there was a classic RIBE in U87MG spheroids exposed to 4 Gy of X-rays, using a medium transfer technique. Changes in the expression of pro- and anti-apoptotic genes indicate involvement of both intrinsic apoptotic and MAPK pathways in inducing these effects.
Collapse
Affiliation(s)
- Fahime Faqihi
- Radiation Sciences Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Neshastehriz
- Radiation Sciences Department, Faculty of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | | | - Robabeh Shabani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazila Eivazzadeh
- Radiation Research Center, a.ja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Toossi MTB, Mohebbi S, Samani RK, Soleymanifard S. MRC5 and QU-DB bystander cells can produce bystander factors and induce radiation bystander effect. J Med Phys 2014; 39:192-6. [PMID: 25190998 PMCID: PMC4154187 DOI: 10.4103/0971-6203.139011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/16/2022] Open
Abstract
Radiation damages initiated by radiation-induced bystander effect (RIBE) are not limited to the first or immediate neighbors of the irradiated cells, but the effects have been observed in the cells far from the irradiation site. It has been postulated that bystander cells, by producing bystander factors, are actively involved in the propagation of bystander effect in the regions beyond the initial irradiated site. Current study was planned to test the hypothesis. MRC5 and QU-DB cell lines were irradiated, and successive medium transfer technique was performed to induce bystander effects in two bystander cell groups. Conditioned medium extracted from the target cells was transferred to the bystander cells (first bystander cells). After one hour, conditioned medium was substituted by fresh medium. Two hours later, the fresh medium was transferred to a second group of non-irradiated cells (second bystander cells). Micronucleated cells (MC) were counted to quantify damages induced in the first and second bystander cell groups. Radiation effect was observed in the second bystander cells as well as in the first ones. Statistical analyses revealed that the number of MC in second bystander subgroups was significantly more than the corresponding value observed in control groups, but in most cases it was equal to the number of MC observed in the first bystander cells. MRC5 and QU-DB bystander cells can produce and release bystander signals in the culture medium and affect non-irradiated cells. Therefore, they may contribute to the RIBE propagation.
Collapse
Affiliation(s)
- Mohammad Taghi Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ; Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokoufeh Mohebbi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Kamran Samani
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokouhozaman Soleymanifard
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ; Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ; Department of Medical Physics, Omid Hospital, Mashhad, Iran
| |
Collapse
|
9
|
Soleymanifard S, Toossi MTB, Samani RK, Mohebbi S. Investigation of the bystander effect in MRC5 cells after acute and fractionated irradiation in vitro. J Med Phys 2014; 39:93-7. [PMID: 24872606 PMCID: PMC4035621 DOI: 10.4103/0971-6203.131282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/26/2013] [Accepted: 12/27/2013] [Indexed: 11/26/2022] Open
Abstract
Radiation-induced bystander effect (RIBE) has been defined as radiation responses observed in nonirradiated cells. It has been the focus of investigators worldwide due to the deleterious effects it induces in nonirradiated cells. The present study was performed to investigate whether acute or fractionated irradiation will evoke a differential bystander response in MRC5 cells. A normal human cell line (MRC5), and a human lung tumor cell line (QU-DB) were exposed to 0, 1, 2, and 4Gy of single acute or fractionated irradiation of equal fractions with a gap of 6 h. The MRC5 cells were supplemented with the media of irradiated cells and their micronucleus frequency was determined. The micronucleus frequency after single and fractionated irradiation did not vary significantly in the MRC5 cells conditioned with autologous or QU-DB cell-irradiated media, except for 4Gy where the frequency of micronucleated cells was lower in those MRC5 cells cultured in the media of QU-DB-exposed with a single dose of 4Gy. Our study demonstrates that the radiation-induced bystander effect was almost similar after single acute and fractionated exposure in MRC5 cells.
Collapse
Affiliation(s)
- Shokouhozaman Soleymanifard
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ; Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ; Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Kamran Samani
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokoufeh Mohebbi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Soleymanifard S, Bahreyni Toossi MT, Sazgarnia A, Mohebbi S. The role of target and bystander cells in dose-response relationship of radiation-induced bystander effects in two cell lines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2013; 16:177-83. [PMID: 24298387 PMCID: PMC3843862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 08/05/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE(S) Radiation effect induced in nonirradiated cells which are adjacent or far from irradiated cells is termed radiation-induced bystander effect (RIBE). Published data on dose-response relationship of RIBE is controversial. In the present study the role of targeted and bystander cells in RIBE dose-response relationship of two cell lines have been investigated. MATERIALS AND METHODS Two cell lines (QU-DB and MRC5) which had previously exhibited different dose-response relationship were selected. In the previous study the two cell lines received medium from autologous irradiated cells and the results showed that the magnitude of damages induced in QU-DB cells was dependent on dose unlike MRC5 cells. In the present study, the same cells irradiated with 0.5, 2 and 4 Gy gamma rays and their conditioned media were transferred to nonautologous bystander cells; such that the bystander effects due to cross-interaction between them were studied. Micronucleus assay was performed to measure the magnitude of damages induced in bystander cells (RIBE level). RESULTS QU-DB cells exhibited a dose-dependent response. RIBE level in MRC5 cells which received medium from 0.5 and 2 Gy QU-DB irradiated cells was not statistically different, but surprisingly when they received medium from 4Gy irradiated QU-DB cells, RIBE was abrogated. CONCLUSION RESULTS pertaining to QU-DB and MRC5 cells indicated that both target and bystander cells determined the outcome. Triggering the bystander effect depended on the radiation dose and the target cell-type, but when RIBE was triggered, dose-response relationship was predominantly determined by the bystander cell type.
Collapse
Affiliation(s)
- Shokouhozaman Soleymanifard
- Medical Physics Resaerch Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Shokouhozaman Soleymanifard, Medical Physics Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-511-8002325; Fax: +98-511-8002320; E-mail:
| | - Mohammad Taghi Bahreyni Toossi
- Medical Physics Resaerch Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ameneh Sazgarnia
- Medical Physics Resaerch Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokoufe Mohebbi
- Medical Physics Resaerch Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|