1
|
Agradi S, Munga A, Barbato O, Palme R, Tarhan D, Bilgiç B, Dokuzeylül B, Ercan AM, Or ME, Brecchia G, Curone G, Draghi S, Vigo D, Marongiu ML, González-Cabrera M, Menchetti L. Goat hair as a bioindicator of environmental contaminants and adrenal activation during vertical transhumance. Front Vet Sci 2023; 10:1274081. [PMID: 38026642 PMCID: PMC10666633 DOI: 10.3389/fvets.2023.1274081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Autochthonous breeds of livestock are considered a pivotal genetic resource for agriculture, rural development, and food and nutrition security. In the Italian Alps, local livestock breeds are maintained using the traditional alpine farming system based on vertical transhumance, with the use of alpine pastures from late spring to autumn and indoor housing with a hay-based diet for the remaining part of the year. Because of their tight link with the territory of origin, local breeds could be used to biomonitor environmental contaminations. Moreover, animal welfare should also be monitored during transhumance in animals, which are exposed to a sudden farming system change and different types of stressors. For these reasons, this investigation hypothesized that the content of trace elements, heavy metals, and cortisol in the hair of goats changes during vertical transhumance, possibly reflecting different dietary contents and activity of the hypothalamic-pituitary-adrenal (HPA) axis. This study aimed to assess the response of an Italian local goat breed to the change from indoor housing to alpine pasture in summer in terms of hair concentrations of (i) trace elements and heavy metals and (ii) cortisol. The regrown hair of Frisa goats was monthly collected for 2 consecutive years (n = 10 for heavy metals and trace elements and n = 6 for cortisol in 2021, n = 17 for both analyses in 2022), once before vertical transhumance and twice after that event. Hair was then analyzed for trace elements, heavy metals, and cortisol by inductively coupled plasma-optical emission spectrophotometer (ICP-OES) and enzyme immunoassay (EIA), respectively. Data were analyzed by multilevel models. The results showed an increase in As content during alpine pasture (p < 0.01), probably reflecting the soil and water As contents of the grazing area, while Mg, Zn, and Al (p < 0.01) followed the opposite trend, decreasing in the second month after vertical transhumance. Hair cortisol concentrations increased during 2 months of alpine pasture (p < 0.001), indicating an increase in the activation of the HPA axis, in agreement with previous studies. Future investigations can consider a longer study period and the development of ad hoc animal welfare indicators.
Collapse
Affiliation(s)
- Stella Agradi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Albana Munga
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Tirana, Albania
| | - Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Rupert Palme
- Unit of Physiology, Pathophysiology, and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine of Vienna, Vienna, Austria
| | - Duygu Tarhan
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Türkiye
| | - Bengü Bilgiç
- Department of Internal Medicine, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Banu Dokuzeylül
- Department of Internal Medicine, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Alev Meltem Ercan
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Mehmet Erman Or
- Department of Internal Medicine, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Susanna Draghi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Daniele Vigo
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | | | - Marta González-Cabrera
- Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | - Laura Menchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| |
Collapse
|
2
|
Alam T, Shahid F, Abidi S, Parwez I, Khan F. Thymoquinone supplementation mitigates arsenic-induced cytotoxic and genotoxic alterations in rat liver. J Trace Elem Med Biol 2022; 74:127067. [PMID: 36155422 DOI: 10.1016/j.jtemb.2022.127067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2022]
Abstract
Arsenic, a widespread environmental toxin, produces multiple organ toxicity, including hepatotoxicity. Thymoquinone (TQ) is known to restore liver functions in several hepatic injury models. This study aims to assess the mitigative potential of TQ against sodium arsenate (NaAs)-induced cytotoxic and genotoxic alterations in the liver. Rats were randomly distributed to control, NaAs, TQ, and NaAs+TQ groups. NaAs+TQ and TQ group of rats were pre-treated with TQ (1.5 mg/kg bwt, orally) for 14 days, and the treatment was further continued for 30 days, with and without NaAs treatment (5 mg/kg bwt, orally), respectively. The deleterious histological alterations in the liver of arsenic intoxicated animals were accompanied by an upsurge in the activities of serum ALT and AST, the diagnostic indicators of liver injury. NaAs caused pronounced alterations in the activities of membrane marker and carbohydrate metabolic enzymes and the enzymatic and non-enzymatic components of hepatic antioxidant defense. Significant hepatocyte DNA damage and hepatic arsenic accumulation were also observed in arsenic-exposed rats. TQ supplementation alleviated these adverse alterations and improved the overall hepatic metabolic and antioxidant status in NaAs-administered rats. Prevention of oxidative injury could be the key mechanism of TQ-elicited protective effects. TQ may have an excellent scope as a dietary supplement in the management of arsenic-induced hepatic pathophysiology.
Collapse
Affiliation(s)
- Tauseef Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Faaiza Shahid
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Subuhi Abidi
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Iqbal Parwez
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Rathi BS, Kumar PS. A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126299. [PMID: 34102361 DOI: 10.1016/j.jhazmat.2021.126299] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 05/10/2023]
Abstract
Arsenic liberation and accumulation in the groundwater environment are both affected by the presence of primary ions and soluble organic matter. The most important influencing role in the co-occurrence is caused by human activity, which includes logging, agricultural runoff stream, food, tobacco, and fertilizers. Furthermore, it covers a wide range of developed and emerging technologies for removing arsenic impurities from the ecosystem, including adsorption, ion exchangers, bio sorption, coagulation and flocculation, membrane technology and electrochemical methods. This review thoroughly explores various arsenic toxicity to the atmosphere and the removal methods involved with them. To begin, the analysis focuses on the general context of arsenic outbreaks in the area, health risks associated with arsenic, and measuring techniques. The utilization of innovative functional substances such as graphite oxides, metal organic structures, carbon nanotubes, and other emerging types of composite materials, as well as the ease, reduced price, and simple operating method of the adsorbent material, are better potential alternatives for arsenic removal. The aim of this article is to examine the origins of arsenic, as well as identification and treatment methods. It also addressed recent advancements in Arsenic removal using graphite oxides, carbon nanotubes, metal organic structures, magnetic nano composites, and other novel types of usable materials. Under ideal conditions for the above methods, the arsenic removal will achieve nearly 99% in lab scale.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| |
Collapse
|
4
|
Experimental acute arsenic toxicity in Balb/c mice: organic markers and splenic involvement. ACTA ACUST UNITED AC 2021; 41:99-110. [PMID: 33761193 PMCID: PMC8055596 DOI: 10.7705/biomedica.5485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 11/21/2022]
Abstract
Introduction: Arsenic is an environmental toxic present worldwide. In men and animals, various organs and tissues are targets of its deleterious effects including those of the immune system.
Objective: To determine acute arsenic toxicity in tissues and target cells of Balb/c mice using an in vivo methodology.
Materials and methods: We injected Balb/c mice intraperitoneally with 9.5 or 19 mg/kg of sodium arsenite (NaAsO2), or an equivalent volume of physiological solution as a control (with 3 per experimental group). After 30 minutes, the animals were sacrificed to obtain spleen, thymus, liver, kidneys, and blood. We determined arsenic, polyphenols, and iron concentrations in each sample and we evaluated the oxidative markers (peroxides, advanced products of protein oxidation, and free sulfhydryl groups). In splenocytes from the spleen, cell viability and mitochondrial potential were also determined.
Results: The exposure to an acute dose of NaAsO2 reduced the mitochondrial function of splenocytes, which resulted in cell death. Simultaneously, the confirmed presence of arsenic in spleen samples and the resulting cytotoxicity occurred with a decrease in polyphenols, free sulfhydryl groups, and an alteration in the content and distribution of iron, but did not increase the production of peroxides.
Conclusion: These findings provide scientific evidence about changes occurring in biomarkers involved in the immunotoxicity of arsenic and offer a methodology for testing possible treatments against the deleterious action of this compound on the immune system.
Collapse
|
5
|
Toxicity in Goats Exposed to Arsenic in the Region Lagunera, Northern Mexico. Vet Sci 2020; 7:vetsci7020059. [PMID: 32375384 PMCID: PMC7357139 DOI: 10.3390/vetsci7020059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023] Open
Abstract
The Region Lagunera, a region in northeast Mexico, is undergoing significant problems with the quality of its groundwater, which exceeds the permissible limits of contaminants and/or heavy metals stipulated in Mexican legislation. The present study evaluated chronic toxicity in male goats exposed to arsenic via one ex situ Group 1 (n = 5) and one in situ female goats Group 3 (n = 10). The treatment in Group 1 was carried out in the La Laguna experimental field of the Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), located in Matamoros, Coahuila, Mexico. Sodium arsenite (2 mg/kg) was orally administered for 84 days to five male Creole goats, aged between four and five years old and weighing between 60 and 70 kg, in order to determine its effect on urine toxicity, libido, and physiological condition, an untreated group (n = 5) was included (Group 2). The experiment in group 3 was conducted on ten female Creole goats, aged between four and six years old and weighing between 40 and 49 kg, in both the contaminated sampling area in the rural community of El Venado and the control sampling area in the rural community of Nuevo Reynosa (Group 4 (n = 5)), in which the arsenic levels were measured in the urine of the exposed goats, as was their physiological condition. Significant differences (p < 0.01) between the groups were found in both the arsenic concentration in the urine and the physiological condition observed in both experimental groups.
Collapse
|
6
|
Welch BM, Branscum A, Geldhof GJ, Ahmed SM, Hystad P, Smit E, Afroz S, Megowan M, Golam M, Sharif O, Rahman M, Quamruzzaman Q, Christiani DC, Kile ML. Evaluating the effects between metal mixtures and serum vaccine antibody concentrations in children: a prospective birth cohort study. Environ Health 2020; 19:41. [PMID: 32276596 PMCID: PMC7146972 DOI: 10.1186/s12940-020-00592-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/27/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Many populations are exposed to arsenic, lead, and manganese. These metals influence immune function. We evaluated the association between exposure to single and multiple metals, including arsenic, lead, and manganese, to humoral immunity as measured by antibody concentrations to diphtheria and tetanus toxoid among vaccinated Bangladeshi children. Additionally, we examined if this association was potentially mediated by nutritional status. METHODS Antibody concentrations to diphtheria and tetanus were measured in children's serum at age 5 (n = 502). Household drinking water was sampled to quantify arsenic (W-As) and manganese (W-Mn), whereas lead was measured in blood (B-Pb). Exposure samples were taken during pregnancy, toddlerhood, and early childhood. Multiple linear regression models (MLRs) with single or combined metal predictors were used to determine the association with antibody outcomes. MLR results were transformed to units of percent change in outcome per doubling of exposure to improve interpretability. Structural equation models (SEMs) were used to further assess exposure to metal mixtures. SEMs regressed a latent exposure variable (Metals), informed by all measured metal variables (W-As, W-Mn, and B-Pb), on a latent outcome variable (Antibody), informed by measured antibody variables (diphtheria and tetanus). Weight-for-age z-score (WFA) at age 5 was evaluated as a mediator. RESULTS Diphtheria antibody was negatively associated with W-As during pregnancy in MLR, but associations were attenuated after adjusting for W-Mn and B-Pb (- 2.9% change in diphtheria antibody per doubling in W-As, 95% confidence interval [CI]: - 7%, 1.5%). Conversely, pregnancy levels of B-Pb were positively associated with tetanus antibody, even after adjusting for W-As and W-Mn (13.3%, 95% CI: 1.7%, 26.3%). Overall, null associations were observed between W-Mn and antibody outcomes. Analysis by SEMs showed that the latent Metals mixture was significantly associated with the latent Antibody outcome (β = - 0.16, 95% CI: - 0.26, - 0.05), but the Metals variable was characterized by positive and negative loadings of W-As and B-Pb, respectively. Sex-stratified MLR and SEM analyses showed W-As and B-Pb associations were exclusive to females. Mediation by WFA was null, indicating Metals only had direct effects on Antibody. CONCLUSIONS We observed significant modulation of vaccine antibody concentrations among children with pregnancy and early life exposures to drinking water arsenic and blood lead. We found distinct differences by child sex, as only females were susceptible to metal-related modulations in antibody levels. Weight-for-age, a nutritional status proxy, did not mediate the association between the metal mixture and vaccine antibody.
Collapse
Affiliation(s)
- Barrett M. Welch
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
- Oregon Health and Sciences University, Portland, OR USA
| | - Adam Branscum
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - G. John Geldhof
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Sharia M. Ahmed
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Ellen Smit
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Sakila Afroz
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | - Meghan Megowan
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | | | - Omar Sharif
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | | | | | | | - Molly L. Kile
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| |
Collapse
|
7
|
Guvvala PR, Ravindra JP, Selvaraju S. Impact of environmental contaminants on reproductive health of male domestic ruminants: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3819-3836. [PMID: 31845245 DOI: 10.1007/s11356-019-06980-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Environmental contaminants are gaining more attention in the livestock sector lately due to their harmful effects on productivity and fertility of livestock. Recent research indicates that many domestic ruminants are becoming subfertile/infertile due to confounding reasons associated with management. Contaminants like metals, metalloids, herbicides, pesticides, insecticides, chemicals, or natural contaminants are present everywhere in day to day life and are becoming a threat to the livestock. Studies on a broad-spectrum of animals suggest that high doses of acute or low doses of chronic exposure to the contaminants lead to disruption of multi-organs/systems including reproductive function. The lowered reproductive efficiency in animals is attributed to the endocrine disruptor activities of the environmental contaminants on the gonads, affecting gametogenesis and steroidogenesis. In vitro studies on testicular cells and the semen suggest that spermatozoa are more susceptible to damage by environmental contaminants. The quality of the semen happens to be a critical factor in the livestock industry. Contaminants affecting gametogenesis and steroidogenesis may lead to devastating consequences to the livestock reproduction, and thus the production. However, there is a lack of collective data on the effect of such environmental contaminants on the fertility of male domestic ruminants. This review discusses the studies related to the impact of environmental contaminants on male fertility in large (bull and buffalo) and small (sheep and goat) ruminants by focusing on the underlying molecular interactions between the contaminants and gonads.
Collapse
Affiliation(s)
- Pushpa Rani Guvvala
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India.
| | - Janivara Parameswaraiah Ravindra
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
- ICAR-National Fellow, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Arsenic, a known carcinogen and developmental toxicant, is a major threat to global health. While the contribution of arsenic exposure to chronic diseases and adverse pregnancy and birth outcomes is recognized, its ability to impair critical functions of humoral and cell-mediated immunity-including the specific mechanisms in humans-is not well understood. Arsenic has been shown to increase risk of infectious diseases that have significant health implications during pregnancy and early life. Here, we review the latest research on the mechanisms of arsenic-related immune response alterations that could underlie arsenic-associated increased risk of infection during the vulnerable periods of pregnancy and early life. RECENT FINDINGS The latest evidence points to alteration of antibody production and transplacental transfer as well as failure of T helper cells to produce IL-2 and proliferate. Critical areas for future research include the effects of arsenic exposure during pregnancy and early life on immune responses to natural infection and the immunogenicity and efficacy of vaccines.
Collapse
|
9
|
Biswas S, Maji C, Sarkar PK, Sarkar S, Chattopadhyay A, Mandal TK. Ameliorative effect of two Ayurvedic herbs on experimentally induced arsenic toxicity in calves. JOURNAL OF ETHNOPHARMACOLOGY 2017; 197:266-273. [PMID: 27496583 DOI: 10.1016/j.jep.2016.07.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 07/18/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic arsenic poisoning due to contaminated subsoil water is a threat to society in West Bengal, India and in Bangladesh. The human being may also be affected by the exposed cattle from the affected area by consuming milk, egg, meat and others. In Ayurveda, several herbs like Haridra (turmeric), Shunthi (dried ginger root) and others are used for the management of arsenic poisoning. AIM OF THE STUDY The study was conducted to find out the ameliorative effect of turmeric and ginger powder against experimentally induced arsenic toxicity in calves. MATERIALS AND METHODS Twenty four calves were divided into four groups (group I, II, III and IV) having six animals in each group. Animals of group I, II and III were orally administered with sodium arsenite at 1mg/kg body weight for 90 days and in addition group II and group III animals were treated orally with turmeric and ginger powder respectively at 10mg/kg body weight from 46th day onwards. Group IV animals were given food and water without drug and served as control. Arsenic content was estimated in faeces, hair, urine and plasma in every 15 days. Bio-chemical, haematological and anti-oxidant parameters were also assessed. RESULTS Turmeric and ginger powder significantly (P<0.05) reduced the plasma and hair arsenic levels through increased excretion via faeces and urine. Haemoglobin level, TEC and TLC were decreased in groups I, II and III, however these were improved significantly (P<0.05) from 75th day onwards in turmeric and ginger treated groups. Increased activity of AST and ALT were significantly decreased (P<0.05) from 75th day onwards in group II and III. Blood urea nitrogen and plasma creatinine were also significantly decreased (P<0.05) in group II and III than group I from 60th day onwards. The SOD and catalase activity were significantly (P<0.05) reduced in groups I, II and III, but these were restored at the end of the experiment in turmeric and ginger treated groups. CONCLUSION The test drugs are found significantly effective not only to eliminate arsenic from the body but also give protection from possible damage caused by arsenic exposure, it may be concluded from the present study that turmeric and ginger can be helpful in the therapy of chronic arsenic toxicity in calves.
Collapse
Affiliation(s)
- Suman Biswas
- Department of Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Chinmoy Maji
- Department of Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Prasanta Kumar Sarkar
- J. B. Roy State Ayurvedic Medical College and Hospital, West Bengal University of Health Sciences, Kolkata 700004, West Bengal, India.
| | - Samar Sarkar
- Department of Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Abichal Chattopadhyay
- Institute of Post Graduate Ayurvedic Education and Research, West Bengal University of Health Sciences, Kolkata 700009, West Bengal, India
| | - Tapan Kumar Mandal
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| |
Collapse
|
10
|
Gora RH, Kerketta P, Baxla SL, Toppo R, Prasad R, Patra PH, Roy BK. Ameliorative Effect of Tephrosia Purpurea in Arsenic-induced Nephrotoxicity in Rats. Toxicol Int 2014; 21:78-83. [PMID: 24748739 PMCID: PMC3989919 DOI: 10.4103/0971-6580.128807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Objectives: The present investigation was conducted to evaluate the nephroprotective activity of Tephrosia purpurea (TPE) against arsenic-induced toxicity. Materials and Methods: Twenty four number of wistar rats were equally divided into three groups. Sodium arsenite (10 mg/kg) was orally given to group I for 28 days, additionally group II was orally treated with TPE (500 mg/kg), while the control group was kept untreated with neither arsenic nor TPE. Serum biomarker levels, oxidative stress indices and arsenic concentration in kidney were estimated. Histopathology of kidney was also conducted. Results: Group II animals show significantly reduced blood urea nitrogen and plasma creatinine, and increased serum albumin level compared to group I. The higher lipid peroxidation with exhausted superoxide dismutase activity and reduced glutathione level were noticed in group I compared to group II. There was no significant difference in arsenic accumulation in kidneys between the two arsenic treated groups, but the histopathology of kidney of group II rats revealed reduced necrosis and intact tubular architecture as compared to group I. Conclusions: Tephrosia Purpurea extract has a significant role in protecting the animals from arsenic-induced nephrotoxicity.
Collapse
Affiliation(s)
- Ravuri Halley Gora
- Department of Veterinary Pharmacology and Toxicology, Ranchi Veterinary College, Birsa Agricultural University, India
| | - Priscilla Kerketta
- Department of Veterinary Public Health, I.V.R.I. Izatnagar, Bareilly, India
| | - Sushma Lalita Baxla
- Department of Veterinary Pharmacology and Toxicology, Ranchi Veterinary College, Birsa Agricultural University, India
| | - Reetu Toppo
- Department of Veterinary Pharmacology and Toxicology, Ranchi Veterinary College, Birsa Agricultural University, India
| | - Raju Prasad
- Department of Veterinary Pharmacology and Toxicology, Ranchi Veterinary College, Birsa Agricultural University, India
| | - Pabitra Hriday Patra
- Department of Pharmacology and Toxicology, College of Veterinary Sciences and A.H, R. K. Nagar, Agartala, Tripura (W), India
| | - Birendra Kumar Roy
- Department of Veterinary Pharmacology and Toxicology, Ranchi Veterinary College, Birsa Agricultural University, India
| |
Collapse
|
11
|
Singh MK, Yadav SS, Yadav RS, Singh US, Shukla Y, Pant KK, Khattri S. Efficacy of crude extract of Emblica officinalis (amla) in arsenic-induced oxidative damage and apoptosis in splenocytes of mice. Toxicol Int 2014; 21:8-17. [PMID: 24748729 PMCID: PMC3989920 DOI: 10.4103/0971-6580.128784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction: Arsenic, an environmental contaminant naturally occurred in groundwater and has been found to be associated with immune-related health problems in humans. Objective: In view of increasing risk of arsenic exposure due to occupational and non-occupational settings, the present study has been focused to investigate the protective efficacy of amla against arsenic-induced spleenomegaly in mice. Results: Arsenic exposures (3 mg/kg body weight p.o for 30 days) in mice caused an increase production of ROS (76%), lipid peroxidation (84%) and decrease in the levels of superoxide dismutase (53%) and catalase (54%) in spleen as compared to controls. Arsenic exposure to mice also caused a significant increase in caspases-3 activity (2.8 fold) and decreases cell viability (44%), mitochondrial membrane potential (47%) linked with apoptosis assessed by the cell cycle analysis (subG1-28.72%) and annexin V/PI binding in spleen as compared to controls. Simultaneous treatment of arsenic and amla (500 mg/kg body weight p.o for 30 days) in mice decreased the levels of lipid peroxidation (33%), ROS production (24%), activity of caspase-3 (1.4 fold), apoptosis (subG1 12.72%) and increased cell viability (63%), levels superoxide dismutase (80%), catalase (77%) and mitochondrial membrane potential (66%) as compared to mice treated with arsenic alone. Conclusions: Results of the present study indicate that the effect of arsenic is mainly due to the depletion of glutathione in liver associated with enhanced oxidative stress that has been found to be protected following simultaneous treatment of arsenic and amla.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Pharmacology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Suraj Singh Yadav
- Department of Pharmacology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Rajesh Singh Yadav
- Department of Criminology and Forensic Science, School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh, India
| | - Uma Shanker Singh
- Department of Pharmacology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Yogeshwar Shukla
- Proteomics Laboratory, CSIR Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Kamlesh Kumar Pant
- Department of Pharmacology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Sanjay Khattri
- Department of Pharmacology, King George Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|