1
|
Shanmuganathan N, Wadham C, Shahrin N, Feng J, Thomson D, Wang P, Saunders V, Kok CH, King RM, Kenyon RR, Lin M, Pagani IS, Ross DM, Yong ASM, Grigg AP, Mills AK, Schwarer AP, Braley J, Altamura H, Yeung DT, Scott HS, Schreiber AW, Hughes TP, Branford S. Impact of additional genetic abnormalities at diagnosis of chronic myeloid leukemia for first-line imatinib-treated patients receiving proactive treatment intervention. Haematologica 2023; 108:2380-2395. [PMID: 36951160 PMCID: PMC10483360 DOI: 10.3324/haematol.2022.282184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
The BCR::ABL1 gene fusion initiates chronic myeloid leukemia (CML); however, evidence has accumulated from studies of highly selected cohorts that variants in other cancer-related genes are associated with treatment failure. Nevertheless, the true incidence and impact of additional genetic abnormalities (AGA) at diagnosis of chronic phase (CP)-CML is unknown. We sought to determine whether AGA at diagnosis in a consecutive imatinib-treated cohort of 210 patients enrolled in the TIDEL-II trial influenced outcome despite a highly proactive treatment intervention strategy. Survival outcomes including overall survival, progression-free survival, failure-free survival, and BCR::ABL1 kinase domain mutation acquisition were evaluated. Molecular outcomes were measured at a central laboratory and included major molecular response (MMR, BCR::ABL1 ≤0.1%IS), MR4 (BCR::ABL1 ≤0.01%IS), and MR4.5 (BCR::ABL1 ≤0.0032%IS). AGA included variants in known cancer genes and novel rearrangements involving the formation of the Philadelphia chromosome. Clinical outcomes and molecular response were assessed based on the patient's genetic profile and other baseline factors. AGA were identified in 31% of patients. Potentially pathogenic variants in cancer-related genes were detected in 16% of patients at diagnosis (including gene fusions and deletions) and structural rearrangements involving the Philadelphia chromosome (Ph-associated rearrangements) were detected in 18%. Multivariable analysis demonstrated that the combined genetic abnormalities plus the EUTOS long-term survival clinical risk score were independent predictors of lower molecular response rates and higher treatment failure. Despite a highly proactive treatment intervention strategy, first-line imatinib-treated patients with AGA had poorer response rates. These data provide evidence for the incorporation of genomically-based risk assessment for CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/therapeutic use
- Antineoplastic Agents/therapeutic use
- Philadelphia Chromosome
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myeloid, Chronic-Phase/drug therapy
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Naranie Shanmuganathan
- Department of Hematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australasian Leukemia and Lymphoma Group (ALLG).
| | - Carol Wadham
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide
| | - NurHezrin Shahrin
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide
| | - Jinghua Feng
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide
| | - Daniel Thomson
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide
| | - Paul Wang
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide
| | - Verity Saunders
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide
| | - Chung Hoow Kok
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide
| | - Rob M King
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide
| | - Rosalie R Kenyon
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide
| | - Ming Lin
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide
| | - Ilaria S Pagani
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australasian Leukemia and Lymphoma Group (ALLG)
| | - David M Ross
- Department of Hematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Australasian Leukemia and Lymphoma Group (ALLG); Department of Hematology, Flinders University and Medical Centre, Adelaide
| | - Agnes S M Yong
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australasian Leukemia and Lymphoma Group (ALLG); The University of Western Australia Medical School, Western Australia
| | - Andrew P Grigg
- Australasian Leukemia and Lymphoma Group (ALLG); Department of Clinical Hematology, Austin Hospital and University of Melbourne, Melbourne
| | - Anthony K Mills
- Australasian Leukemia and Lymphoma Group (ALLG); Department of Hematology, Princess Alexandra Hospital, Brisbane
| | - Anthony P Schwarer
- Australasian Leukemia and Lymphoma Group (ALLG); Department of Hematology, Box Hill Hospital, Melbourne
| | - Jodi Braley
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide
| | - Haley Altamura
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide
| | - David T Yeung
- Department of Hematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australasian Leukemia and Lymphoma Group (ALLG)
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide
| | - Andreas W Schreiber
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia; School of Biological Sciences, University of Adelaide, Adelaide
| | - Timothy P Hughes
- Department of Hematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australasian Leukemia and Lymphoma Group (ALLG)
| | - Susan Branford
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide
| |
Collapse
|
2
|
Gagnon MF, Berg HE, Meyer RG, Sukov WR, Van Dyke DL, Jenkins RB, Greipp PT, Thorland EC, Hoppman NL, Xu X, Baughn LB, Reichard KK, Ketterling RP, Peterson JF. Typical, atypical and cryptic t(15;17)(q24;q21) (PML::RARA) observed in acute promyelocytic leukemia: a retrospective review of 831 patients with concurrent chromosome and PML::RARA dual-color dual-fusion FISH studies. Genes Chromosomes Cancer 2022; 61:629-634. [PMID: 35639830 DOI: 10.1002/gcc.23070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/07/2022] Open
Abstract
The diagnosis of acute promyelocytic leukemia (APL) relies on the identification of PML::RARA fusion. While the majority of APL cases harbor a typical t(15;17)(q24;q21), atypical genetic mechanisms leading to the oncogenic PML::RARA fusion have been reported yet their frequency and scope remain poorly characterized. We assessed the genetic findings of 831 cases with APL investigated with concurrent chromosome banding analysis and dual-color dual-fusion fluorescence in situ hybridization (D-FISH) analysis at our institution over an 18.5-year timeframe. Seven-hundred twenty-three (87%) cases had a typical balanced t(15;17) with both testing modalities. Atypical karyotypic results including complex translocations, unbalanced rearrangements and insertional events occurred in 50 (6%) cases, while 6 (0.7%) cases were cryptic by conventional chromosome studies despite PML::RARA fusion by D-FISH evaluation. Atypical FISH patterns were observed in 48 (6%) cases despite apparently balanced t(15;17) on chromosome banding analysis. Two-hundred fifty (30%) cases displayed additional chromosome abnormalities of which trisomy/tetrasomy 8 (37%), del(7q)/add(7q) (12%) and del(9q) (7%) were most frequent. Complex and very complex karyotypes were observed in 81 (10%) and 34 (4%) cases, respectively. In addition, 4 (0.5%) cases presented as an apparently doubled, near-tetraploid stemline clone. This report provides the largest appraisal of cytogenetic findings in APL with conventional chromosome and PML::RARA D-FISH analysis. By characterizing the frequency and breadth of typical and atypical results through the lens of these cytogenetic testing modalities, this study serves as a pragmatic source of information for those involved in the investigation of APL in both the clinical and research laboratory settings.
Collapse
Affiliation(s)
- Marie-France Gagnon
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Holly E Berg
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Reid G Meyer
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - William R Sukov
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Daniel L Van Dyke
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Robert B Jenkins
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Patricia T Greipp
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Erik C Thorland
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Nicole L Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Xinjie Xu
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Linda B Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kaaren K Reichard
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rhett P Ketterling
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jess F Peterson
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Venci A, Mazza R, Spinelli O, Di Schiena L, Bettio D. Acute promyelocytic leukemia with a cryptic insertion of RARA into PML on chromosome 15 due to uniparental isodisomy: A case report. Oncol Lett 2017; 13:4180-4184. [PMID: 28599418 PMCID: PMC5453168 DOI: 10.3892/ol.2017.5979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/30/2016] [Indexed: 01/03/2023] Open
Abstract
Acute promyelocytic leukemia is a myeloid disorder that is characterized by the specific t(15;17) variant in ~98% of cases. The typical hypergranular and microgranular or hypogranular types exist, and are frequently associated with disseminated intravascular coagulopathy. Rare cases of promyelocytic leukemia-retinoic acid receptor α (PML-RARA) fusion without the reciprocal RARA-PML have been reported in cytogenetically normal samples. Conversely, fluorescence in situ hybridization (FISH) analysis has revealed a cryptic insertion of the RARA gene into the PML gene on chromosome 15. The current study reports a unique case with a normal karyotype and molecular evidence of the PML-RARA short isoform 3-fusion transcript, with FISH analysis revealing two fusion signals on the two copies of chromosome 15, but absence of the reciprocal on the two copies of chromosome 17. This finding raised the hypothesis of chromosome 15 uniparental isodysomy as consequence of normal chromosome 15 loss and duplication of the rearranged chromosome, as supported by polymorphic loci molecular analysis. The clinical, cytogenetic and molecular characterization of this case are presented and discussed in the present study.
Collapse
Affiliation(s)
- Anna Venci
- Cytogenetic and Medical Genetic Laboratory, Operative Unit of Clinical Investigations, Humanitas Clinical and Research Center, I-20089 Milan, Italy
| | - Rita Mazza
- Operative Unit of Medical Oncology and Hematology, Humanitas Clinical and Research Center, I-20089 Milan, Italy
| | - Orietta Spinelli
- Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, I-24127 Bergamo, Italy
| | - Luciana Di Schiena
- Cytogenetic and Medical Genetic Laboratory, Operative Unit of Clinical Investigations, Humanitas Clinical and Research Center, I-20089 Milan, Italy
| | - Daniela Bettio
- Cytogenetic and Medical Genetic Laboratory, Operative Unit of Clinical Investigations, Humanitas Clinical and Research Center, I-20089 Milan, Italy
| |
Collapse
|
4
|
Amare PSK, Jain H, Kabre S, Deshpande Y, Pawar P, Banavali S, Menon H, Sengar M, Arora B, Khattry N, Narula G, Sarang D, Kaskar S, Bagal B, Jain H, Dangi U, Subramanian PG, Gujral S. Cytogenetic Profile in 7209 Indian Patients with <i>de novo</i> Acute Leukemia: A Single Centre Study from India. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jct.2016.77056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Xu Y, Zhuo J, Duan Y, Shi B, Chen X, Zhang X, Xiao L, Lou J, Huang R, Zhang Q, Du X, Li M, Wang D, Shi D. Construction of protein profile classification model and screening of proteomic signature of acute leukemia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5569-5581. [PMID: 25337199 PMCID: PMC4203170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 07/28/2014] [Indexed: 06/04/2023]
Abstract
The French-American-British (FAB) and WHO classifications provide important guidelines for the diagnosis, treatment, and prognostic prediction of acute leukemia, but are incapable of accurately differentiating all subtypes, and not well correlated with the clinical outcomes. In this study, we performed the protein profiling of the bone marrow mononuclear cells from the patients with acute leukemia and the health volunteers (control) by surface enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI_TOF_MS). The patients with acute leukemia were analyzed as unitary by the profiling that were grouped into acute promyelocytic leukemia (APL), acute myeloid leukemia-granulocytic (AML-Gran), acute myeloid leukemia-monocytic (AML-Mon) acute lymphocytic leukemia (ALL), and control. Based on 109 proteomic signatures, the classification models of acute leukemia were constructed to screen the predictors by the improvement of the proteomic signatures and to detect their expression characteristics. According to the improvement and the expression characteristics of the predictors, the proteomic signatures (M3829, M1593, M2121, M2536, M1016) characterized successively each group (CON, APL, AML-Gra, AML-Mon, ALL) were screened as target molecules for identification. Meanwhile, the proteomic-based class of determinant samples could be made by the classification models. The credibility of the proteomic-based classification passed the evaluation of Biomarker Patterns Software 5.0 (BPS 5.0) scoring and validated application in clinical practice. The results suggested that the proteomic signatures characterized by different blasts were potential for developing new treatment and monitoring approaches of leukemia blasts. Moreover, the classification model was potential in serving as new diagnose approach of leukemia.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/analysis
- Case-Control Studies
- Computational Biology
- Decision Trees
- Female
- Humans
- Leukemia, Myeloid, Acute/classification
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Promyelocytic, Acute/classification
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Male
- Neoplasm Proteins/analysis
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/classification
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Predictive Value of Tests
- Prognosis
- Protein Array Analysis
- Proteomics/methods
- Reproducibility of Results
- Software Validation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Yun Xu
- Central Laboratory, Shenzhen Second People’s HospitalShenzhen, Guangdong, China
| | - Jiacai Zhuo
- Institue of Hemotology, Shenzhen Second People’s HospitalShenzhen, Guangdong, China
| | - Yonggang Duan
- Central Laboratory, Shenzhen Second People’s HospitalShenzhen, Guangdong, China
| | - Benhang Shi
- Department of Civil and Environmental Engineering, Rice UniversityHouston, TX 77005, USA
| | - Xuhong Chen
- Central Laboratory, Shenzhen Second People’s HospitalShenzhen, Guangdong, China
| | - Xiaoli Zhang
- Central Laboratory, Shenzhen Second People’s HospitalShenzhen, Guangdong, China
| | - Liang Xiao
- Central Laboratory, Shenzhen Second People’s HospitalShenzhen, Guangdong, China
| | - Jin Lou
- Institue of Hemotology, Shenzhen Second People’s HospitalShenzhen, Guangdong, China
| | - Ruihong Huang
- Institue of Hemotology, Shenzhen Second People’s HospitalShenzhen, Guangdong, China
| | - Qiongli Zhang
- Institue of Hemotology, Shenzhen Second People’s HospitalShenzhen, Guangdong, China
| | - Xin Du
- Institue of Hemotology, Shenzhen Second People’s HospitalShenzhen, Guangdong, China
| | - Ming Li
- Institue of Hemotology, Shenzhen Second People’s HospitalShenzhen, Guangdong, China
| | - Daping Wang
- Central Laboratory, Shenzhen Second People’s HospitalShenzhen, Guangdong, China
| | - Dunyun Shi
- Institue of Hemotology, Shenzhen Second People’s HospitalShenzhen, Guangdong, China
| |
Collapse
|
6
|
Kaur A, Khan F, Agrawal SS, Kapoor A, Agarwal SK, Phadke SR. Cytochrome P450 (CYP2C9*2,*3) & vitamin-K epoxide reductase complex (VKORC1 -1639G<A) gene polymorphisms & their effect on acenocoumarol dose in patients with mechanical heart valve replacement. Indian J Med Res 2013; 137:203-9. [PMID: 23481074 PMCID: PMC3657889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND & OBJECTIVES Studies have demonstrated the effect of CYP2C9 (cytochrome P450) and VKORC1 (vitamin K epoxide reductase complex) gene polymorphisms on the dose of acenocoumarol. The data from India about these gene polymorphisms and their effects on acenocoumarol dose are scarce. The aim of this study was to determine the occurrence of CYP2C9*2,*3 and VKORC 1 -1639G>A gene polymorphisms and to study their effects on the dose of acenocoumarol required to maintain a target International Normalized Ratio (INR) in patients with mechanical heart valve replacement. METHODS Patients from the anticoagulation clinic of a tertiary care hospital in north India were studied. The anticoagulation profile, INR (International Normalized Ratio) values and administered acenocoumarol dose were obtained from the clinical records of patients. Determination of the CYP2C9*2,*3 and VKORC1 -1639G>A genotypes was done by PCR-RFLP (restriction fragment length polymorphism). RESULTS A total of 111 patients were studied. The genotype frequencies of CYP2C9 *1/*1,*1/*2,*1/*3 were as 0.883, 0.072, 0.036 and that of VKORC1 -1639G>A for GG, AG, and AA genotypes were 0.883, 0.090, and 0.027, respectively. The percentage of patients carrying any of the variant alleles of CYP2C9 and VKORC1 in heterozygous or homozygous form was 34% among those receiving a low dose of ≤20 mg/wk while it was 13.8 per cent in those receiving >20 mg/wk (P=0.014). A tendency of lower dose requirements was seen among carriers of the studied polymorphisms. There was considerable variability in the dose requirements of patients with and without variant alleles. INTERPRETATION & CONCLUSIONS The study findings point towards the role of CYP2C9 and VKORC1 gene polymorphisms in determining the inter-individual dose variability of acenocoumarol in the Indian patients with mechanical heart valve replacement.
Collapse
Affiliation(s)
- Anupriya Kaur
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Farah Khan
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Suraksha S. Agrawal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Aditya Kapoor
- Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Surendra K. Agarwal
- Department of Cardiovascular & Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Shubha R. Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India,Reprint requests: Dr Shubha R. Phadke, Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow 226 014, India e-mail:
| |
Collapse
|
7
|
Vundinti BR, Ghosh K. Chromosomal aberrations in hematological malignancies: A guide to the identification of novel oncogenes. INDIAN JOURNAL OF HUMAN GENETICS 2011; 17:43-4. [PMID: 22090710 PMCID: PMC3214315 DOI: 10.4103/0971-6866.86168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Babu Rao Vundinti
- National Institute of Immunohaematology (ICMR), KEM Hospital Campus, Parel, Mumbai, India
| | | |
Collapse
|