1
|
Schestakow A, Lefering GJ, Hannig M. An Ultrastructural, In-Situ Study on the Impact of Desensitizing Agents on Dentin. Int Dent J 2024:S0020-6539(24)01540-5. [PMID: 39384442 DOI: 10.1016/j.identj.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION AND AIMS With the increasing prevalence of dentin hypersensitivity, more and more desensitizing agents with tubule-occluding properties are advocated in the market. The aim of the present study was to investigate the deposition of these agents on the dentin surface under in-situ conditions. METHODS Bovine dentin specimens were pretreated with phosphoric acid and fixed to individual upper splints that were carried by up to 2 subjects for 3 min to allow pellicle formation. The desensitizing agents containing either calcium carbonate and arginine, casein-phosphopeptide amorphous calcium phosphate, zinc-carbonate hydroxyapatite, tetracalcium phosphate and dicalcium phosphate anhydrous or hydroxyapatite nanoparticles were applied ex situ. Specimens without treatment served as controls. After a further 6 h of intraoral exposure, specimens were removed and analysed by scanning (n = 4 specimens per substance, in total) and transmission electron microscopy (n = 2 specimens per substance). RESULTS Application of desensitizing agents resulted in the deposition of different structures on the dentin surface and occlusion of dentinal tubules. CONCLUSION The ultrastructural analysis using transmission electron microscopy indicates that dentinal tubules were occluded under in-situ conditions not only by inorganic but also by organic deposits from the oral cavity.
Collapse
Affiliation(s)
- Anton Schestakow
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany.
| | - Gerrit Josef Lefering
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
2
|
Jeon MJ, Ahn JS, Park JK, Seo DG. Investigation of the crystal formation from calcium silicate in human dentinal tubules and the effect of phosphate buffer saline concentration. J Dent Sci 2024; 19:2278-2285. [PMID: 39347063 PMCID: PMC11437271 DOI: 10.1016/j.jds.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose Based on hydrodynamic theory, blocking the dentinal tubules can reduce discomfort caused by dentin hypersensitivity. This study identified the crystals formed in dentinal tubules from tricalcium silicate (TCS) in phosphate-buffered saline (PBS) and evaluated the effect of PBS concentration on crystal formation. Materials and methods Sixty-nine specimens were made by isolating the cervical part of extracted premolars. TCS was applied by brushing for 10,000 strokes on dentin surface simulating sensitive dentin. Specimens were stored in PBS or solutions with concentrations 1/100, 1/10, 10, and 100 times that of PBS for 1, 30, 60, or 90 days (n = 3). Another nine specimens applied TCS, were immersed in PBS for 3 months, and divided into three subgroups: no treatment, sonication for 10 min, and 1M acetic acid treatment for 3 min. Crystal formation was examined using a scanning electron microscope, assigned five grade scores (0-4) according to maturation, and analyzed by a nonparametric two-way ANOVA (α = 0.05). Crystal components were analyzed using X-ray diffraction (XRD) and energy dispersion X-ray spectroscopy (EDS). Results The maturation of intratubular crystals was dependent on time and PBS concentration (P < 0.05). In all periods, the high-concentration group showed a higher maturation grade than the low-concentration group. Intratubular crystals were similar to hydroxyapatite according to XRD and EDS, and they withstood sonication and acid application. Conclusion TCS with nanosized particles formed hydroxyapatite-like crystals in the dentinal tubules, which were dependent on time and concentration of PBS and withstood sonication and acid application.
Collapse
Affiliation(s)
- Mi-Jeong Jeon
- Department of Conservative Dentistry, Gangnam Severance Hospital, Yonsei University, Seoul, Republic of Korea
- Department of Conservative Dentistry, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jin-Soo Ahn
- Dental Research Institute and Department of Biomaterials Science, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Kil Park
- Department of Conservative Dentistry, Dental Research Institute, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Deog-Gyu Seo
- Department of Conservative Dentistry, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Sharifzadeh SS, Nasrollahi P, Azizi A, Lawaf S. Comparison of the Effects of Gluma Gel, Sensodyne Repair and Protect Toothpaste, and an 810 nm Low Power Diode Laser on the Closure of Dentinal Tubules: An In Vitro Study. J Lasers Med Sci 2024; 15:e48. [PMID: 39450002 PMCID: PMC11499961 DOI: 10.34172/jlms.2024.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024]
Abstract
Introduction: One of the common problems among dental patients is tooth hypersensitivity. There are various treatments for hypersensitivity, such as gels, solutions, toothpaste, and laser treatments. This report examined the effect of three treatments, namely 810 nm wavelength diode laser, Gluma gel, and Sensodyne Repair and Protect toothpaste, on tooth hypersensitivity. Methods: This experimental survey selected 40 premolars free of caries, fractures, restorations, root canal therapy, or wear. The enamel of the midline in the cervical part of the buccal surface was removed by a bur (the area was 2*2 mm and the depth was 2 mm), and the samples were then prepared and divided into four groups. Sensodyne Repair and Protect toothpaste, Gluma gel, and an 810 nm diode laser with 0.5 W power were applied to three groups of teeth. The samples were analyzed by using a field emission scanning electron microscope (FE-SEM). The data from the occluded dentinal tubules, partially occluded tubules, and open tubules were analyzed by using the Tamhane test. Results: The amount of occluded dentinal tubules was 83.2±9% in the laser group, 74.4±11.62% in the Gluma group, 67.1±18% in the Sensodyne group, and 15.03±3.39% in the control group. The difference between the treatment groups and the control group was meaningful (P<0.05). However, the difference between the Gluma group, the Sensodyne group, and the 810 nm laser group was not significant (P>0.05). Conclusion: The three treatments (810 nm diode laser, Gluma, and Sensodyne) were all effective in occluding dentinal tubules compared to the control group. However, there was no significant difference between these three treatment methods (P>0.05).
Collapse
Affiliation(s)
- Seyedeh Saba Sharifzadeh
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parto Nasrollahi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Arash Azizi
- Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shirin Lawaf
- Department of Prosthodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Helal MB, Sheta MS, Alghonemy WY. Comparing the remineralization potential of undemineralized dentin powder versus chicken eggshell powder on artificially induced initial enamel carious lesions: an in-vitro investigation. BMC Oral Health 2024; 24:1048. [PMID: 39245766 PMCID: PMC11382454 DOI: 10.1186/s12903-024-04778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND White spot lesions are a widespread undesirable effect, especially prevalent during fixed orthodontic treatments. The study compared the in vitro enamel remineralization potential of undemineralized dentin matrix (UDD) versus chicken eggshell powder (CESP) for artificially induced enamel lesions. METHODS 100 caries-free and sound maxillary premolars were randomly divided into four groups each contain 25 teeth: Group I (Baseline): No treatment was done to the enamel surface. Group II (Negative control ): The enamel surface of the teeth underwent demineralization using demineralizing solution to create artificial carious lesions then kept in artificial saliva. Group III (CESP treated): After demineralizing the tooth surface, the teeth have been suspended in the CESP remineralizing solution. Group IV (UDD treated): After enamel demineralization, the teeth were suspended in UDD remineralizing solution. The remineralization potential was assessed by Vickers microhardness testing, scanning electron microscopic examination (SEM), and energy dispersive X-ray (EDX). RESULTS The current study demonstrated an increase in the mean microhardness of CESP and UDD-treated groups; however, It was nearer to the baseline level in the UDD group. SEM imaging revealed greater enamel remineralization in the UDD group compared to the remaining groups. The UDD group disclosed complete coverage for the prismatic enamel compared to the CESP group, which revealed a partially remineralized enamel surface. Interestingly, the Ca/P ratio increased significantly in the CESP group compared to the negative control group. In contrast, a higher significant increase in the mean Ca/P ratios was recorded in the UDD group compared to the test groups. CONCLUSION biomimetic UDD and CESP powder should be utilized to treat enamel early carious lesions. However, UDD demonstrated the most significant remineralization potential.
Collapse
Affiliation(s)
- Mai Badreldin Helal
- Oral Biology Department, Faculty of Dentistry, Tanta University, El-Giesh St, Tanta, Gharbia, Egypt.
| | - Mai Samy Sheta
- Dental Biomaterial Department, Faculty of Dentistry, Tanta University, El-Giesh St, Tanta, Gharbia, Egypt
| | - Wafaa Yahia Alghonemy
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa City, Jordan
- Oral Biology Department, Faculty of Dentistry, Tanta University, El-Giesh St, Tanta, Gharbia, Egypt
| |
Collapse
|
5
|
Jeon MJ, Park JW, Seo DG. Intratubular crystal formation in the exposed dentin from nano-sized calcium silicate for dentin hypersensitivity treatment. Sci Rep 2023; 13:14243. [PMID: 37648709 PMCID: PMC10469191 DOI: 10.1038/s41598-023-30351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/21/2023] [Indexed: 09/01/2023] Open
Abstract
The aim of this study is to evaluate intratubular crystal formation from the experimental material consisting of dicalcium silicate (C2S) and tricalcium silicate (C3S) with nano-scaled particle size. A total of twenty-four specimens were made by isolating 8 mm of the cervical part centered at the cementoenamel junction of extracted premolars. Twelve specimens were not treated and considered as control. The experimental material was applied to the other twelve specimens by brushing for 10,000 strokes. Each group was randomly divided into four subgroups according to the period of immersion in phosphate buffer saline (PBS) for 1, 30, 60, and 90 days each. The specimens were sectioned longitudinally and examined with scanning electron microscopy and energy dispersion X-ray spectroscopy. The intratubular crystal were formed in PBS and densely filled the dentinal tubules over time. The crystal formation occurred at a depth of more than 50 μm from the dentin surface. The Ca/P ratio of formed intratubular crystals was 1.68 after 3 months. The experimental material consisting of C2S and C3S with a nanoscale particle size can form hydroxyapatite-like crystals in dentinal tubules in PBS, and there is a possibility of reducing dentin hypersensitivity by blocking the dentinal fluid flow.
Collapse
Affiliation(s)
- Mi-Jeong Jeon
- Department of Conservative Dentistry, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Conservative Dentistry, College of Dentistry, Gangnam Severance Hospital, Yonsei University, Seoul, Republic of Korea
| | - Jeong-Won Park
- Department of Conservative Dentistry, College of Dentistry, Gangnam Severance Hospital, Yonsei University, Seoul, Republic of Korea
| | - Deog-Gyu Seo
- Department of Conservative Dentistry, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Bhavan Ram U, Sujatha V, Vidhya S, Jayasree R, Mahalaxmi S. Oyster shell-derived nano-hydroxyapatite and proanthocyanidin pretreatment on dentinal tubule occlusion and permeability before and after acid challenge-an in vitro study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:17. [PMID: 37036573 PMCID: PMC10085962 DOI: 10.1007/s10856-023-06724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
This in vitro study evaluated the dentinal tubule occlusion (TO), depth of penetration (DoP), and dentin permeability (DP) of oyster shell-derived nanohydroxyapatite (os-nHAp) with and without 15% proanthocyanidin (PA) pretreatment. os-nHAp was synthesized via the precipitation method and it was characterized. The morphology and particle size of os-nHAp were analyzed using a high-resolution transmission electron microscope (HRTEM). Cytotoxicity of os-nHAp, PA/os-nHAp, and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) was assessed by (3-(4,5-dimethythiazol-2-yl) 2,5-diphenyl tetrazolium bromide (MTT) assay using human osteosarcoma (MG-63) cell line. One hundred and ninety-seven dentin discs of 3 mm thickness were prepared from the crown portion of extracted human teeth. The dentinal surfaces of the discs were etched for 2 min with 6% citric acid to simulate dentin hypersensitivity. Five discs were randomly selected and the patency of dentinal tubules was confirmed using a scanning electron microscope (SEM). The remaining 192 discs were divided into four groups (n = 48) depending on the type of remineralization as follows: group 1: os-nHAp, group 2: PA/os-nHAp, group 3: CPP-ACP, and group 4: no treatment. The remineralization protocol was followed for 21 days. Out of the 48 dentin discs in each group, 32 discs were used to evaluate dentinal tubule occlusion (TO) and depth of penetration (DoP) using SEM. The remaining 16 discs were subjected to an assessment of dentin permeability (DP) using a hydraulic conductance model. TO, DoP and DP were evaluated after remineralization and acid challenge. Characterization studies confirmed the presence of pure phase apatite. HRTEM confirmed the nanometric particle size of os-nHAp. MTT assay results showed that all the tested materials exhibited >80% cell viability when tested up to a concentration of 100 µg/mL. The results demonstrated a significantly higher mean percentage of TO, DoP, and lesser mean DP after remineralization in groups 1, 2, and 3 (p < 0.05). After the acid challenge, group 3 showed a significant reduction in TO and DoP, and increased DP (p < 0.05). However, no such changes were observed in groups 1 and 2. Within the limitations of this study, it can be concluded that os-nHAp and PA/os-nHAp could serve as potential and durable therapeutic agents in the treatment of dentin hypersensitivity.
Collapse
Affiliation(s)
- Udatha Bhavan Ram
- Department of Conservative Dentistry and Endodontics, SRM Institute of Science and Technology, SRM Dental College, Bharathi Salai, Ramapuram, Chennai, 600 089, India
| | - Venkatappan Sujatha
- Department of Conservative Dentistry and Endodontics, SRM Institute of Science and Technology, SRM Dental College, Bharathi Salai, Ramapuram, Chennai, 600 089, India
| | - Sampath Vidhya
- Department of Conservative Dentistry and Endodontics, SRM Institute of Science and Technology, SRM Dental College, Bharathi Salai, Ramapuram, Chennai, 600 089, India.
| | - Raghavan Jayasree
- Department of Biomedical Engineering, GKM College of Engineering and Technology, Chennai, 600 063, India
| | - Sekar Mahalaxmi
- Department of Conservative Dentistry and Endodontics, SRM Institute of Science and Technology, SRM Dental College, Bharathi Salai, Ramapuram, Chennai, 600 089, India
| |
Collapse
|
7
|
Effect of Pistacia lentiscus Extract on Dentin
Remineralization: An In Vitro Study. JOURNAL OF RESEARCH IN DENTAL AND MAXILLOFACIAL SCIENCES 2023. [DOI: 10.52547/jrdms.8.1.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
8
|
Hussein F, Imam H. The Effect of Eggshell and Seashell Nanoparticles Alone and Combined With Nd: YAG Laser on Occlusion and Remineralization Potential of Patent Dentinal Tubules: An In Vitro Study. J Lasers Med Sci 2022; 13:e43. [PMID: 36743145 PMCID: PMC9841379 DOI: 10.34172/jlms.2022.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/12/2022] [Indexed: 01/27/2023]
Abstract
Introduction: There is an interest in developing materials with bioactive potential that could block exposed dentinal tubules. This study compared the effects of eggshell and seashell nanoparticles individually or combined with ND:YAG laser on dentinal tubules occlusion and remineralization. Methods: Fifty radicular dentin discs were prepared from freshly extracted human premolars. The smear layer created by cutting was removed using 37% phosphoric acid gel for 15 sec. The discs were divided into five groups according to the applied treatment(A) (n = 10 each): (A1) control, (A2); Nano eggshells, (A3); Nano seashells, (A4); Nano eggshells + Nd: YAG Laser, and (A5); Nano sea shell + Nd: YAG Laser. Each specimen was evaluated for tubular patency and mineral contents before and after each therapy using ESEM-EDXA energy dispersive spectroscopy for the assessment of tubule occlusion and remineralization. Results: ESEM results revealed a statistically significant decrease in the mean percent changes of the dentinal tubules number after the treatment of the experimental groups compared to the control. The greatest percent decrease was recorded in the seashell NPs + Nd: YAG laser, followed by the eggshell NPs + Nd: YAG laser, then Eggshell NPs only and then Seashell NPs only, while the lowest percentage decrease was recorded in the control group. EDXA revealed that the greatest percentage increase in Ca wt% was recorded in the Eggshell + Nd:YAG laser group, followed by Eggshell only, then Seashell only and then Seashell NPs + Nd: YAG laser, while the lowest percent increase was recorded in the control group. The post hoc test revealed no significant difference between the experimental groups. Conclusions: Both eggshell and seashell nanoparticles are effective in the occlusion and remineralization of dentinal tubules. The combined treatments with Nd: YAG laser had no benefits when compared to the effect of treatments alone.
Collapse
Affiliation(s)
- Fatma Hussein
- Lecturer of Conservative Dentistry, Faculty of Dental Medicine for Girls, AL-Azhar University Cairo, Egypt,Correspondence to Fatma Hussein,
| | - Hisham Imam
- Professor of Laser Physics and Spectroscopy in National Institute of Enhanced Laser Science, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Occlusion effects of bioactive glass and hydroxyapatite on dentinal tubules: a systematic review. Clin Oral Investig 2022; 26:6061-6078. [DOI: 10.1007/s00784-022-04639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
|
10
|
Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, Morgano SM. Functional role of inorganic trace elements in dentin apatite tissue-part III: Se, F, Ag, and B. J Trace Elem Med Biol 2022; 72:126990. [PMID: 35569285 DOI: 10.1016/j.jtemb.2022.126990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
Dentin hydroxyapatite possesses a unique versatile structure which allows it to undergo ionic substitutions. Trace elements play pivotal roles within the oral cavity, especially in dentin apatite tissue. Therefore, it is critical to explore the role of these elements in dentin apatite structure. The roles of other inorganic elements in dentin apatite were discussed in part I (Mg, Sr, Zn, and Fe) and part II (Cu, Mn, Si, and Li) of these series. In the last part of the review series, the role of selenium, fluorine, silver, and boron in the regulation of dentin apatite structure and function was discussed. We evaluated how these elements affect the overall size, morphology, and crystallinity of dentin apatite crystals. Moreover, we investigated the importance of these elements in regulating the solubility of dentin apatite. An electronic search was performed on the role of these trace elements in dentin apatite from January 2010 to January 2022. The concentration of selenium in teeth has been explored only recently, particularly its incorporation into dentin apatite. Silver nanomaterials inhibit the growth of cariogenic microorganisms as well as arrest the degradation of collagen. Fluorine was found to have important roles in dentin remineralization and dentinal tubule occlusion, making it widely used for hydroxyapatite doping. Boron is critical for mineralized tissues like bone, dentin, and enamel, but its exact role in dentin apatite is unknown. Therefore, understanding the impact of these elements on dentin apatite is potentially transformative, as it may help to fill a significant knowledge gap in teeth mechanics.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Director, Biomaterial Laboratory and Assistant Professor, Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, United States; Adjunct Assistant Professor, Department of Endodontics, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States.
| | - Julia Vakhnovetsky
- Visiting Researcher, Sector of Angiogenesis Regenerative Medicine, Dr. Hajar Afsar Lajevardi Research Cluster (DHAL), Hackensack, NJ, United States; Pre-Dental Student, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Anna Vakhnovetsky
- Pre-Medical Student, Johns Hopkins University, Baltimore, MD, United States
| | - Steven M Morgano
- Chair and Professor, Director and Professor, Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, United States
| |
Collapse
|
11
|
Xu S, Stranick M, Hines D, Du K, Pan L. Super high-quality SEM/FIB imaging of dentine structures without collagen fiber loss through a metal staining process. Sci Rep 2022; 12:2369. [PMID: 35149756 PMCID: PMC8837798 DOI: 10.1038/s41598-022-06271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022] Open
Abstract
Scanning Electron Microscope/Focused Ion Beam (SEM/FIB) system has become valuable and popular tool for the analysis of biological materials such as dentine structures. According to physiological and anatomical studies, dentine structures are a complicated system containing collagen fibers, nanocrystalline hydroxyapatite, and numerous networks of tubular pores. During a routine FIB milling process, collagen fibers and other organic structures are vaporized, which increases the number of pores on the milled surface of the dentine. This causes the final cross-section to be more porous than the pristine sample. Unfortunately, little attention has been paid to the collagen fiber loss and how to preserve them during a FIB milling process. In this work, we present a novel and simple approach to preserve the organic portions of the dentine structure through metal staining. By using this method, the porosity of the dentine structure after the FIB milling process is significantly reduced similar to the pristine sample. This indicates that the organic portion of the dentine structure is well protected by the metal staining. This approach enables the SEM/FIB system to generate super-high quality SEM images with less ion beam damage; and the SEM images can better reflect the original condition of the dentine structure. Further, serial energy-dispersive X-ray spectroscopy (EDS) mapping of the stained dentine structure is achieved without an additional metal coating; and three-dimensional (3-D) elemental mapping of an occluded dentine is achieved with a significantly reduced data acquisition time.
Collapse
Affiliation(s)
- Shiyou Xu
- Colgate-Palmolive Technology Center, 909 River Road, Piscataway, NJ, 08844, USA.
| | - Michael Stranick
- Colgate-Palmolive Technology Center, 909 River Road, Piscataway, NJ, 08844, USA
| | - Deon Hines
- Colgate-Palmolive Technology Center, 909 River Road, Piscataway, NJ, 08844, USA
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Long Pan
- Colgate-Palmolive Technology Center, 909 River Road, Piscataway, NJ, 08844, USA
| |
Collapse
|
12
|
Naseri S, Cooke ME, Rosenzweig DH, Tabrizian M. 3D Printed In Vitro Dentin Model to Investigate Occlusive Agents against Tooth Sensitivity. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7255. [PMID: 34885408 PMCID: PMC8658150 DOI: 10.3390/ma14237255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022]
Abstract
Tooth sensitivity is a painful and very common problem. Often stimulated by consuming hot, cold, sweet, or acidic foods, it is associated with exposed dentin microtubules that are open to dental pulp. One common treatment for tooth hypersensitivity is the application of occlusive particles to block dentin microtubules. The primary methodology currently used to test the penetration and occlusion of particles into dentin pores relies upon dentin discs cut from extracted bovine/human teeth. However, this method is limited due to low accessibility to the raw material. Thus, there is a need for an in vitro dentin model to characterize the effectiveness of occlusive agents. Three-dimensional printing technologies have emerged that make the printing of dentin-like structures possible. This study sought to develop and print a biomaterial ink that mimicked the natural composition and structure of dentin tubules. A formulation of type I collagen (Col), nanocrystalline hydroxyapatite (HAp), and alginate (Alg) was found to be suitable for the 3D printing of scaffolds. The performance of the 3D printed dentin model was compared to the natural dentin disk by image analysis via scanning electron microscopy (SEM), both pre- and post-treatment with occlusive microparticles, to evaluate the degree of dentinal tubule occlusion. The cytocompatibility of printed scaffolds was also confirmed in vitro. This is a promising biomaterial system for the 3D printing of dentin mimics.
Collapse
Affiliation(s)
- Shiva Naseri
- Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada
| | - Megan E Cooke
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | | | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
13
|
Nahórny S, de Oliveira IR, Soares LES. Biomineralization induced by chitosan and collagen-based materials with fluoride for dentin coverage: Chemical and morphological analysis. Microsc Res Tech 2021; 85:1089-1100. [PMID: 34741774 DOI: 10.1002/jemt.23978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/05/2021] [Accepted: 10/24/2021] [Indexed: 11/10/2022]
Abstract
The prevention and treatment of erosive tooth wear are becoming increasingly important due to its increasing prevalence. The use of natural solutions to modify dental surfaces has become an area of research. Organic materials such as chitosan and hydrolyzed collagen may be a promising option to treat dentin. This in vitro study aimed to evaluate the influence of chitosan or hydrolyzed collagen, alone or combined with acidulated phosphate fluoride (APF) gel, on the composition and morphology of dentin after erosion. Bovine dentin samples were prepared (n = 84) and treated with artificial saliva (AS, negative control); APF gel (F, positive control); chitosan solution (Chi); hydrolyzed collagen solution (Col); fluoride/chitosan composition (F_Chi); and fluoride/hydrolyzed collagen composition (F_Col). Erosive cycles (six cycles of immersion in orange juice for 1 min, followed by immersion in AS for 1 hr) were performed. The materials were characterized by their morphology, composition, and particle size distribution. Micro-energy dispersive X-ray fluorescence spectroscopy and scanning electron were used to evaluate the dentin's inorganic chemical composition and morphology. The F_Col and F groups had a reduction in calcium loss by 17 and 26%, respectively (p < .001). Both of these groups still had a covering layer of agglomerates at the dentin surface after the erosive cycles. The fluoridated chitosan or collagen solutions improved the dentin resistance to erosion as a novel hybrid-fluoride-based material approach to provide surface protection from erosion.
Collapse
Affiliation(s)
- Sidnei Nahórny
- Laboratorio de Odontologia e Materiais Aplicados, Instituto de Pesquisa e Desenvolvimento - IP8D, Universidade do Vale do Paraiba, Av. Shishima Hifumi, Sao Jose dos Campos, Sao Paulo, Brazil.,Laboratorio de Ceramicas Avancadas, Instituto de Pesquisa e Desenvolvimento (IP8D), Universidade do Vale do Paraiba, Av. Shishima Hifumi, Sao Jose dos Campos, Sao Paulo, Brazil
| | - Ivone Regina de Oliveira
- Laboratorio de Ceramicas Avancadas, Instituto de Pesquisa e Desenvolvimento (IP8D), Universidade do Vale do Paraiba, Av. Shishima Hifumi, Sao Jose dos Campos, Sao Paulo, Brazil
| | - Luís Eduardo Silva Soares
- Laboratorio de Odontologia e Materiais Aplicados, Instituto de Pesquisa e Desenvolvimento - IP8D, Universidade do Vale do Paraiba, Av. Shishima Hifumi, Sao Jose dos Campos, Sao Paulo, Brazil
| |
Collapse
|
14
|
Karumuri S, Mandava J, Pamidimukkala S, Uppalapati LV, Konagala RK, Dasari L. Efficacy of hydroxyapatite and silica nanoparticles on erosive lesions remineralization. J Conserv Dent 2021; 23:265-269. [PMID: 33551597 PMCID: PMC7861069 DOI: 10.4103/jcd.jcd_182_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/15/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022] Open
Abstract
Aim: The aim is to assess and compare the mineral gain and penetration depth of hydroxyapatite and silica nanoparticle infiltrates into artificially created erosive lesions of enamel and dentin. Materials and Methods: Sixty extracted human molars were sectioned to obtain enamel and dentin samples (n = 60 each). They were demineralized using citric and formic acid, respectively, to create erosive lesions on enamel and dentin surfaces. Samples were assigned into nanohydroxyapatite (nHA) or nanosilica groups (n = 30 each) according to the infiltrant used. Half of the enamel and dentin samples in each group (n = 15) were analyzed after erosive attack for mineral loss, after infiltrant application for mineral gain, using energy-dispersive X-ray spectroscopy. In another half of the enamel and dentin samples (n = 15), the penetration depth of the nanoinfiltrants was analyzed using confocal microscopy. Statistical Analysis: To compare the overall mineral gain between groups, a dependent t-test was applied. The intergroup comparisons were made using one-way ANOVA followed by Tukey post hoc test for pairwise comparisons for both penetration depth and mineral gain. The significance level was set to P ≤ 0.05. Results: The mineral gain in enamel was not statistically different between nHA and nanosilica infiltrants (P = 0.9950). nHA infiltrated dentin showed significantly more mineral gain (P = 0.0001) than nanosilica infiltrant. The depth of penetration of the nHA in enamel was statistically greater than that of nanosilica, but in dentin, the difference was not significant. Conclusion: nHA infiltrant performed better in mineral gain, and penetrated deeper into the demineralized erosive lesions, compared to nanosilica infiltrant in both enamel and dentin. The highest mineral precipitation and deeper penetration into both demineralized enamel and dentin was observed with nHA infiltrant compared to (as against) nanosilica infiltrant.
Collapse
Affiliation(s)
- Srujana Karumuri
- Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, India
| | - Jyothi Mandava
- Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, India
| | - Sahithi Pamidimukkala
- Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, India
| | - Lakshman Varma Uppalapati
- Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, India
| | - Ravi Kumar Konagala
- Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, India
| | - Lohita Dasari
- Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
15
|
Chiang YC, Wang YC, Kung JC, Shih CJ. Antibacterial silver-containing mesoporous bioglass as a dentin remineralization agent in a microorganism-challenged environment. J Dent 2021; 106:103563. [PMID: 33482245 DOI: 10.1016/j.jdent.2020.103563] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To provide a suitable material capable of treating dentin hypersensitivity with simultaneous active antibacterial activity. METHODS We developed silver-containing mesoporous bioglass (MBG-Ag) using the sol-gel technique, which loaded silver nanoparticles as promising bacteriostatic agents. The MBG-Ag with a powder-to-liquid ratio of 0.5 g: 0.01 mL were uniformly mixed with 20 %, 30 %, and 40 % phosphoric acid for 5, 10 and 20 min, respectively. Furthermore, we evaluated the occlusion efficiency, depth of penetration, and antibacterial activity of dentin specimens by simulating a Streptococcus mutans (S. mutans) infection on dentin. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the powders and assess tubule occlusion. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the MBG-Ag against S. mutans were determined via time-killing curves and colony formation assays. RESULTS The MIC ranged from 2.5 to 5 mg/mL, and the MBC ranged from 5 to 10 mg/mL. The highest dentinal tubule occlusion efficiency was over 90 %. The colony formation assay confirmed that 5 mg/mL MBG-Ag mixed with phosphoric acid reached the bactericidal concentration. CONCLUSION The MBG-Ag 40PA achieved a good occlusion efficiency and deep apatite precipitation in a short time, implying its superiority in clinical applications. CLINICAL RELEVANCE The MBG-Ag formed in this study is a promising candidate for the treatment of demineralized dentin and confers antibacterial effects on the remineralized dentin surface against S. mutans.
Collapse
Affiliation(s)
- Yu-Ching Chiang
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yueh-Ching Wang
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung-Chang Kung
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Division of Family Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chi-Jen Shih
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Saini N, Mathur S, Saini V, Kapoor A, Vijay S, Gurjar S. Effect of commercially available nano-hydroxy apatite containing desensitizing mouthwash on dentinal tubular occlusion: an in vitro FESEM analysis. Med Pharm Rep 2020; 93:396-404. [PMID: 33225266 PMCID: PMC7664723 DOI: 10.15386/mpr-1492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/22/2020] [Accepted: 03/19/2020] [Indexed: 11/23/2022] Open
Abstract
Background and aim Dentinal hypersensitivity is a significant clinical problem encountered in daily dental practice. The management of this condition requires a good understanding of the complexity of the problem, as well as the variety of treatments currently available. The treatment approaches can be either home care products or professionally applied desensitizing agents. The present in-vitro study was designed to investigate the dentinal tubule occluding ability of commercially available nano HA containing mouthwash using FESEM analysis. Methods In the present in vitro study, 15 human premolars and canines were taken and sectioned mesiodistally. A total of 30 dentinal samples were obtained. All the dentinal discs were etched with 6% citric acid for 2 minutes. The treated samples were washed thoroughly with distilled water for 30 seconds. Samples were divided in two groups of 15 each. The specimens in Group I were shaken vigorously in the Vitis Sensitive mouthwash for 2 min twice daily for 14 days. After this intervention samples were placed in distilled water. Group II specimens were immersed in distilled water. Samples were subjected to FESEM to analyze for tubular occlusion. Results In group I nearly complete dentinal surface occlusion was present on the 7th and 14th day and precipitates were seen covering a large part of the dentinal surface. In group II no dentinal tubular occlusion was observed. Conclusion The results of the present study support the ability of nHA containing Vitis sensitive mouthwash to occlude the dentinal tubules and thus it may demonstrate a significant reduction in dentinal hypersensitivity when used clinically.
Collapse
Affiliation(s)
- Neha Saini
- Department of Periodontics, RUHS College of Dental Sciences, Jaipur, India
| | - Setu Mathur
- Department of Periodontics, RUHS College of Dental Sciences, Jaipur, India
| | | | - Anjali Kapoor
- Department of Periodontics, RUHS College of Dental Sciences, Jaipur, India
| | - Sharmistha Vijay
- Department of Periodontics, RUHS College of Dental Sciences, Jaipur, India
| | - Sonia Gurjar
- Department of Periodontics, Mahatma Gandhi College of Dental Sciences, Jaipur, India
| |
Collapse
|
17
|
Bordea IR, Candrea S, Alexescu GT, Bran S, Băciuț M, Băciuț G, Lucaciu O, Dinu CM, Todea DA. Nano-hydroxyapatite use in dentistry: a systematic review. Drug Metab Rev 2020; 52:319-332. [PMID: 32393070 DOI: 10.1080/03602532.2020.1758713] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nano-hydroxyapatite (nano-HA) is a material with multiple uses due to its biocompatibility and its resemblance to the nonorganic bone structure. It is used in various dental domains such as implantology, surgery, periodontology, esthetics and prevention. The aim of this study is to provide a wide understanding of nano-HA and to promote treatments based on nanomaterials in dentistry. A search in two data bases, Scopus, and PubMED, was conducted over a 5 years period. We chose a 5 years period because this revealed the most recent published studies with the key words 'nano-HA' and 'dentistry'. A number of 32 studies were included in this systematic review. In implantology the main use of nano-HA was as a coating material for titanium implants and its effect was assessed in the matter of osteointegration and inflammatory response as well as antibacterial activity. In tissue engineering the use of nano-HA was directed to surgery and periodontology and this material was assessed mainly as a grafting material. In esthetics and prevention its use was mainly focused on dentinal hypersensitivity treatment, remineralizing potential and as bleaching co-agent. Nano-HA is a relatively novel material with outstanding physical, chemical, mechanical and biological properties that makes it suitable for multiple interventions. It outperformed most of the classic materials used in implantology and surgery but it should be further investigated for bone engineering and caries prevention therapy.
Collapse
Affiliation(s)
- Ioana Roxana Bordea
- Department of Oral Rehabilitation, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sebastian Candrea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriela Teodora Alexescu
- Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Farmacy, Cluj Napoca, Romania
| | - Simion Bran
- Department of Maxillofacial Surgery and Implantology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Băciuț
- Department of Maxillofacial Surgery and Implantology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Băciuț
- Department of Cranio-Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Rehabilitation, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Mihail Dinu
- Department of Cranio-Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Doina Adina Todea
- Department of Cranio-Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Pneumology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
18
|
Kunam D, Sampath V, Manimaran S, Sekar M. Effect of Indigenously Developed Nano-Hydroxyapatite Crystals from Chicken Egg Shell on the Surface Hardness of Bleached Human Enamel: An In Vitro Study. Contemp Clin Dent 2020; 10:489-493. [PMID: 32308325 PMCID: PMC7150555 DOI: 10.4103/ccd.ccd_810_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: The objective was to evaluate the effect of nano-hydroxyapatite (nHA) derived from chicken eggshell on bleached human enamel in comparison with commercial casein phophopeptide-amorphous calcium phosphate (CPP-ACP) paste using Vickers microhardness test. Materials and Methods: nHA powder was prepared from chicken eggshell using combustion method. nHA slurry was prepared by mixing 1.8 g of nHA powder with 0.3 ml of distilled water. Forty intact maxillary anterior teeth were collected and decoronated, and the crowns were embedded in acrylic mold with the labial enamel surfaces exposed. Baseline microhardness evaluation was done (T0). The specimens were randomly divided into the following four groups (n = 10) based on the surface treatment of enamel: Group 1: no bleaching treatment; Group 2: bleaching with 30% hydrogen peroxide (HP) solution; Group 3: bleaching followed by the application of CPP-ACP; and Group 4: bleaching followed by the application of nHA. The specimens were stored in artificial saliva at 37°C for 2 weeks, after which they were subjected to Vickers microhardness test (T14). One-way ANOVA and Tukey's post hoc multiple comparison tests were used for statistical analysis (P < 0.05). Results: Bleaching with HP significantly decreased the enamel microhardness. CPP-ACP and nHA derived from chicken eggshell increased the enamel microhardness significantly. There was no significant difference in microhardness values among the CPP-ACP and nHA groups. Conclusion: Nano-hydroxyapatite sourced from chicken eggshell was as effective as CPP-ACP in remineralizing and restoring the lost microhardness of bleached enamel.
Collapse
Affiliation(s)
- Divya Kunam
- Department of Conservative Dentistry and Endodontics, Narayana Dental College and Hospital, Nellore, Andhra Pradesh, India
| | - Vidhya Sampath
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Chennai, Tamil Nadu, India
| | - Sujatha Manimaran
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Chennai, Tamil Nadu, India
| | - Mahalaxmi Sekar
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Chennai, Tamil Nadu, India
| |
Collapse
|
19
|
Soares LES, Nahórny S, de Faria Braga V, Marciano FR, Bhattacharjee TT, Lobo AO. Raman spectroscopy-multivariate analysis related to morphological surface features on nanomaterials applied for dentin coverage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117818. [PMID: 31780307 DOI: 10.1016/j.saa.2019.117818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Raman spectroscopy and scanning electron microscopy (SEM) were used to investigate the effect of coating materials and acidulated phosphate fluoride gel (APF) treatment on dentin before and after erosion-abrasion cycles. A multi-walled carbon nanotube/graphene oxide hybrid carbon-based material (MWCNTO-GO), nanohydroxyapatite (nHAp), or a combined composite (nHAp/MWCNTO-GO) were used as a coating. Seventy root dentin fragments obtained from 40 bovine teeth were prepared and divided into groups (n = 10): negative control, artificial saliva - C, positive control - APF; nHAp; MWCNTO-GO; APF_nHAp; APF_MWCNTO-GO and APF_nHAp/MWCNTO-GO. All samples were subjected to cycles of demineralization (orange juice, pH ~3.7, room temperature, 1 min) followed by remineralization (saliva, 37 °C, 1 h). The remineralization procedures were followed by tooth brushing (150 strokes). The above cycle was repeated 3×/day for 5 days. The previous APF treatment of dentin allowed a better affinity of nHAp and MWCNTO-GO with the inorganic and organic portion of dentin, respectively. This interaction indicates the formation of a protective layer for the dentin surface and for the collagen giving possible protection against erosion. SEM micrographs illustrated the formation of a protective layer after application of the biomaterials and that it was partially or totally removed after the erosion and abrasion. Raman spectroscopy combined with multivariate analysis could distinguish samples with respect to treatment efficacy. The APF_nHAP/MWCNT-GO composite has shown to be a promising material since it has binding characteristics both to the inorganic and organic portion of the dentin and reduced solubility. Mineral-to-matrix ratio (MMR) parameter analysis confirmed the binding capability of MWCNTO-GO-based materials to dentin.
Collapse
Affiliation(s)
- Luís Eduardo Silva Soares
- Laboratory of Dentistry and Applied Materials (LDAM), Research and Development Institute (IP&D), Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil.
| | - Sídnei Nahórny
- Laboratory of Dentistry and Applied Materials (LDAM), Research and Development Institute (IP&D), Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Vivian de Faria Braga
- Laboratory of Dentistry and Applied Materials (LDAM), Research and Development Institute (IP&D), Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | | | | | - Anderson Oliveira Lobo
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Department of Materials Engineering, UFPI - Federal University of Piauí, 64049-550 Teresina, PI, Brazil
| |
Collapse
|
20
|
Hines D, Xu S, Stranick M, Lavender S, Pilch S, Zhang YP, Sullivan R, Montesani L, Montesani L, Mateo LR, Williams M. Effect of a stannous fluoride toothpaste on dentinal hypersensitivity: In vitro and clinical evaluation. J Am Dent Assoc 2019; 150:S47-S59. [PMID: 30797259 DOI: 10.1016/j.adaj.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND The authors conducted an in vitro and a clinical study to assess the effect of a toothpaste containing stannous fluoride to occlude dentin tubules and reduce dentinal hypersensitivity. METHODS For the in vitro study, the authors treated the surface of human dentin specimens with test or control toothpaste slurries and then evaluated them by using various spectroscopic techniques. For the clinical study, male and female participants who met the inclusion criteria brushed their teeth twice daily for 1 minute with test or control toothpaste. The authors assessed dentinal hypersensitivity by using tactile and air blast stimuli at baseline and after 4 and 8 weeks. All statistical tests of hypotheses were 2 sided, with a significance level of α set at .05. RESULTS Results from in vitro studies showed that the test toothpaste effectively occluded the dentinal tubules with a deposit consisting of tin, zinc, phosphate, and silicon. The test and control toothpastes occluded the tubules 82% and 35%, respectively. Clinically, at the 4- and 8-week examinations, the test toothpaste provided statistically significant (P < .001) improvements in tactile dentinal hypersensitivity scores of 27.8% and 42.0% and in air blast hypersensitivity scores of 21.4% and 32.3%, respectively, relative to the control toothpaste. CONCLUSIONS The in vitro results indicate the toothpaste containing 0.454% stannous fluoride effectively coated dentin surfaces and occluded patent dentin tubules. Compared with the control toothpaste, the test toothpaste provided a significant reduction in dentinal hypersensitivity after 8 weeks of product use. PRACTICAL IMPLICATIONS A multi-benefit option for patients with dentinal hypersensitivity.
Collapse
|
21
|
Manz AS, Attin T, Sener B, Sahrmann P. Dentin tubule obturation of a bioglass-based dentin desensitizer under repeated exposure to lactid acid and brushing. BMC Oral Health 2019; 19:274. [PMID: 31805922 PMCID: PMC6896668 DOI: 10.1186/s12903-019-0962-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/19/2019] [Indexed: 01/22/2023] Open
Abstract
Background Dentin hypersensitivity is a frequent finding especially in periodontitis patients. Conventional treatment aims for obstruction of dentin tubules by disabling liquid and osmotic fluctuation to and from the pulpal chamber. A novel bioglass-based desensitizer was shown to obstruct tubules and to resist periodic exposure to lactic acid. Whether this obstruction is resistant to brushing had not been tested so far. Accordingly, the present study aimed to assess dentin tubule obstruction after repeated acid exposure and brushing. Methods Sixty dentin discs were cleaned with 17% EDTA, mounted into a pulp fluid simulator and randomly divided into 3 groups: No surface treatment in Group A, Seal&Protect® in group B and DentinoCer in group C. Discs were exposed to 0.1 M non-saturated lactic acid thrice and standardized brushing twice a day for 12 days. At baseline and after 2, 4 and 12 d samples were removed from the setting and prepared for top-view SEM analysis to assess tubule obstruction using the Olley score. Discs were then vertically cut and the section surface morphologically assessed using backscatter imaging. For both vertical and sectional surfaces EDX analysis was used to characterize the surface composition in the tubular and inter-tubular area. Results Group A showed clean tubular lumina at all time points. From day 2 onwards dentin showed exposed collagen fibers. Group 2 initially showed a complete surface coverage that flattened out during treatment without ever exposing tubules. At baseline, samples of Group C displayed a complete homogeneous coverage. From day 2 on tubules entrances with obstructed lumen became visible. While on day 4 and 12 the dentin surface exposed collagen fibers the lumina remained closed. EDX analysis of the vertical and horizontal views showed that P and Ca were predominant elements in both the inter- and tubular dentin while Si peaks were found in the tubule plugs. Conclusion While group B displayed a packed layer on the surface during the whole investigation time group C samples lost their superficial layer within 48 h. Tubule plugs containing considerable Si proportions indicated previous presence of DentinoCer, while high Ca and P proportions suggest obturation by dentin-like material.
Collapse
Affiliation(s)
- Andrea S Manz
- Clinic of Conservative and Preventive Dentistry Periodontology and Cariology Center of Dental Medicine, University of Zuric, Plattenstr, 11 8032, Zurich, Switzerland
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry Periodontology and Cariology Center of Dental Medicine, University of Zuric, Plattenstr, 11 8032, Zurich, Switzerland
| | - Beatrice Sener
- Clinic of Conservative and Preventive Dentistry Periodontology and Cariology Center of Dental Medicine, University of Zuric, Plattenstr, 11 8032, Zurich, Switzerland
| | - Philipp Sahrmann
- Clinic of Conservative and Preventive Dentistry Periodontology and Cariology Center of Dental Medicine, University of Zuric, Plattenstr, 11 8032, Zurich, Switzerland.
| |
Collapse
|
22
|
Kurt S, Kırtıloğlu T, Yılmaz NA, Ertaş E, Oruçoğlu H. Evaluation of the effects of Er:YAG laser, Nd:YAG laser, and two different desensitizers on dentin permeability: in vitro study. Lasers Med Sci 2018; 33:1883-1890. [PMID: 29850962 DOI: 10.1007/s10103-018-2546-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 05/18/2018] [Indexed: 11/25/2022]
Abstract
The purpose of this in vitro study was to evaluate and compare the efficacy of erbium-doped yttrium aluminum garnet (Er:YAG) laser, neodymium-doped yttrium aluminum garnet (Nd:YAG) laser, PrevDent nano-hydroxyapatite toothpaste plus Repairing Serum Kit (PNH), and NUPRO Sensodyne Prophylaxis Paste with NovaMin (NPP) on dentin permeability reduction. Forty dentin discs obtained from bovine incisors were divided into four study groups: Er:YAG laser-treated (2940 nm; 0.2 W, 80 mJ/pulse, 3 Hz); Nd:YAG laser-treated (1064 nm; 1 W, 10 Hz); PNH-treated; and NPP-treated groups. The quantitative changes in permeability of each dentin disc were measured using a computerized fluid filtration method (CFFM) before and after desensitizer treatments. The data were analyzed using the Wilcoxon, paired-samples t, Kruskal-Wallis, and Mann-Whitney U tests. The dentin surfaces and tubules were also morphologically detected by scanning electron microscopy (SEM). In all groups, dentin permeability was significantly reduced after the desensitizer and laser treatments (p < 0.05). Among the groups, we detected a significant difference in only when comparing the Er:YAG laser- and NPP-treated groups (p = 0.034). SEM analysis revealed physical changes in the dentin surface in all groups. This in vitro study shows that all tested desensitizers and laser treatments reduced dentin permeability. Also, surface changes, such as complete or partial occlusion or shrinkage of dentin tubules, were observed in all groups. Although the laser groups performed best, the PNH protocol can be considered as an alternative therapeutic product. In addition, clinical and laboratory studies should be performed for this product, and their efficacy should be assessed by combined therapy with lasers.
Collapse
Affiliation(s)
- Sevda Kurt
- Department of Periodontology, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey.
| | - Tuğrul Kırtıloğlu
- Department of Periodontology, Faculty of Dentistry, Ondokuz Mayis University, Samsun, Turkey
| | - Nasibe Aycan Yılmaz
- Department of Restorative Dentistry, Faculty of Dentistry, Adnan Menderes University, Aydın, Turkey
| | - Ertan Ertaş
- Department of Restorative Dentistry, Faculty of Dentistry, Ondokuz Mayis University, Samsun, Turkey
| | - Hasan Oruçoğlu
- Department of Endodontics, Faculty of Dentistry, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
23
|
Jena A, Kala S, Shashirekha G. Comparing the effectiveness of four desensitizing toothpastes on dentinal tubule occlusion: A scanning electron microscope analysis. J Conserv Dent 2017; 20:269-272. [PMID: 29259366 PMCID: PMC5721511 DOI: 10.4103/jcd.jcd_34_17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Introduction: Dentin hypersensitivity (DH) is a sudden short sharp pain best explained by hydrodynamic theory. Several agents are available throughout the market that can treat DH either by blocking the nerves that helps in conducting pain or by blocking the open dentinal tubules. The aim of the present study was to compare the tubule occluding efficacy of four different desensitizing dentifrices under scanning electron microscope (SEM). Materials and Methods: Sixty-two dentin blocks measuring 5 mm × 5 mm × 3 mm were obtained from extracted human molar teeth and were randomly divided into five groups: Group 1 – no treatment (control, n = 2); Group 2 – Pepsodent Pro-sensitive relief and repair (n = 15); Group 3 – Sensodyne repair and protect (n = 15); Group 4 – Remin Pro (n = 15); Group 5 – Test toothpaste containing 15% nano-hydroxyapatite (n-HA) crystals (n = 15). The specimens were brushed for 2 min/day for 14 days and stored in artificial saliva. After final brushing, specimens were gold sputtered and viewed under SEM at ×2000 magnification. Results obtained were statistically analyzed using nonparametric Kruskal–Wallis test and least significant difference post hoc test. Results: All test groups showed significant increase in dentin tubule occlusion as compared to control group. The highest percentage of tubules occluded was shown by Group 4 and Group 5 which was significantly different from other groups (P ≤ 0.05), and there was no significant difference in tubule occlusion among them. Conclusion: Newer desensitizing dentifrices containing 15% n-HA and Remin Pro can provide effective tubule occlusion and thereby reduce the pain and discomfort caused by DH.
Collapse
Affiliation(s)
- Amit Jena
- Department of Conservative Dentistry and Endodontics, Institute of Dental Sciences, Siksha "O" Anusandhan University, Bhubaneswar, Odisha, India
| | - Soumik Kala
- Private Practice, Kharagpur, West Bengal, India
| | - Govind Shashirekha
- Department of Conservative Dentistry and Endodontics, Institute of Dental Sciences, Siksha "O" Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|