1
|
Wang J, Liu Q, Guo Z, Pan H, Liu Z, Tang R. Progress on Biomimetic Mineralization and Materials for Hard Tissue Regeneration. ACS Biomater Sci Eng 2021; 9:1757-1773. [PMID: 34870411 DOI: 10.1021/acsbiomaterials.1c01070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biomineralization is a process in which natural organisms regulate the crystal growth of inorganic minerals, resulting in hierarchical structured biominerals with excellent properties. Typical biominerals in the human body are the bones and teeth, and damage to these hard tissues directly affect our daily lives. The repair of bones and teeth in a biomimetic way, either by using a biomimetic mineralization strategy or biomimetic materials, is the key for hard tissue regeneration. In this review, we briefly introduce the structure of bone and tooth, and highlight the fundamental role of collagen mineralization in tissue repair. The recent progress on intra-/extrafibrillar collagen mineralization by a biomimetic strategy or materials is presented, and their potential for tissue regeneration is discussed. Then, recent achievements on bone and tooth repair are summarized, and these works are discussed in the view of materials science and biological science, providing a broader vision for the future research of hard tissue repair techniques. Lastly, recent progress on hard tissue regeneration is concluded, and existing problems and future directions are prospected.
Collapse
Affiliation(s)
- Jie Wang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qiqi Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhengxi Guo
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
2
|
Xue W, Xiaobo Z, Bin H, Yanhan D, Shumei L. [Decalcified freeze-dried bone allograft combined with rich platelet derivatives for the treatment of human periodontal intrabony defects: a Meta-analysis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:636-642. [PMID: 29333779 PMCID: PMC7041155 DOI: 10.7518/hxkq.2017.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/06/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This review aims to systematically evaluate the effect of decalcified freeze-dried bone allograft (DFDBA) combined with rich platelet derivatives on the treatment of human periodontal intrabony defects. METHODS A search in PubMed, Web of Science, Embase, Cochrane Library, CNKI, and other electronic databases was conducted to identify randomized controlled trials (RCT) of the use of DFDBA combined with rich platelet derivatives in the treatment of human periodontal intrabony defects, performed before May 2016. The quality of the RCTs was assessed. RevMan 5.3 software was applied for Meta-analysis. RESULTS A total of nine RCTs were included. A total of 194 patients and 303 defects were involved. Short-term (6 months) and long-term (12 to 18 months) groups were included. Meta-analysis results revealed that DFDBA combined with rich platelet derivatives was superior to DFDBA or rich platelet derivatives alone for probing depth reduction in the short-term [MD=0.75 mm, 95% confidence intervals (CI) (0.31 mm, 1.20 mm), P=0.001 0] and longterm groups [MD=0.87 mm, 95%CI (0.02 mm, 1.72 mm), P=0.04], clinical attachment level gain in the short-term [MD=
0.65 mm, 95%CI (0.08 mm, 1.22 mm), P=0.03] and long-term groups [MD=1.31 mm, 95%CI (0.60 mm, 2.01 mm), P<0.000 3], gingival recession reduction in the long-term group [MD=-0.58 mm, 95%CI (-0.78 mm, -0.38mm), P<0.000 01], bone fill gain in the short-term [MD=0.52 mm, 95%CI (0.03 mm, 1.00 mm), P=0.04] and long-term groups [MD=1.26 mm, 95%CI (0.65 mm, 1.86 mm), P<0.000 1]. CONCLUSIONS DFDBA combined with platelet rich derivatives is probably effective in the treatment of human periodontal intrabony defects. It is probably superior to DFDBA or platelet rich derivatives alone. Considering the limitation of the included studies, high-quality and large-sample RCTs are required to evaluate the effect.
Collapse
Affiliation(s)
- Wei Xue
- Dept. of Stomatology, The People's Hospital in Zheng' an County, Zunyi City, Zunyi 563000, China
| | - Zhong Xiaobo
- Dept. of Conservative Dentistry and Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - He Bin
- Dept. of Conservative Dentistry and Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Deng Yanhan
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Luo Shumei
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
3
|
Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res 2017; 21:9. [PMID: 28593053 PMCID: PMC5460509 DOI: 10.1186/s40824-017-0095-5] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
Periodontal disease is categorized by the destruction of periodontal tissues. Over the years, there have been several clinical techniques and material options that been investigated for periodontal defect repair/regeneration. The development of improved biomaterials for periodontal tissue engineering has significantly improved the available treatment options and their clinical results. Bone replacement graft materials, barrier membranes, various growth factors and combination of these have been used. The available bone tissue replacement materials commonly used include autografts, allografts, xenografts and alloplasts. These graft materials mostly function as osteogenic, osteoinductive and/or osteoconductive scaffolds. Polymers (natural and synthetic) are more widely used as a barrier material in guided tissue regeneration (GTR) and guided bone regeneration (GBR) applications. They work on the principle of epithelial cell exclusion to allow periodontal ligament and alveolar bone cells to repopulate the defect before the normally faster epithelial cells. However, in an attempt to overcome complications related to the epithelial down-growth and/or collapse of the non-rigid barrier membrane and to maintain space, clinicians commonly use a combination of membranes with hard tissue grafts. This article aims to review various available natural tissues and biomaterial based bone replacement graft and membrane options used in periodontal regeneration applications.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, 25 Orde St, Toronto, ON M5T 3H7 Canada
| | - Nader Hamdan
- Department of Dental Clinical Sciences, Faculty of Dentistry, Dalhousie University, 5981 University Avenue, PO Box 15000, Halifax, Nova Scotia B3H 4R2 Canada
| | - Yuichi Ikeda
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-5810 Japan
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, 25 Orde St, Toronto, ON M5T 3H7 Canada
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
| |
Collapse
|
4
|
Zang SQ, Kang S, Hu X, Wang M, Wang XW, Zhou T, Wang QT. Comparison of Different Periodontal Healing of Critical Size Noncontained and Contained Intrabony Defects in Beagles. Chin Med J (Engl) 2017; 130:477-486. [PMID: 28218223 PMCID: PMC5324386 DOI: 10.4103/0366-6999.199834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Regenerative techniques help promote the formation of new attachment and bone filling in periodontal defects. However, the dimensions of intraosseous defects are a key determinant of periodontal regeneration outcomes. In this study, we evaluated the efficacy of use of anorganic bovine bone (ABB) graft in combination with collagen membrane (CM), to facilitate healing of noncontained (1-wall) and contained (3-wall) critical size periodontal defects. METHODS The study began on March 2013, and was completed on May 2014. One-wall (7 mm × 4 mm) and 3-wall (5 mm × 4 mm) intrabony periodontal defects were surgically created bilaterally in the mandibular third premolars and first molars in eight beagles. The defects were treated with ABB in combination with CM (ABB + CM group) or open flap debridement (OFD group). The animals were euthanized at 8-week postsurgery for histological analysis. Two independent Student's t-tests (1-wall [ABB + CM] vs. 1-wall [OFD] and 3-wall [ABB + CM] vs. 3-wall [OFD]) were used to assess between-group differences. RESULTS The mean new bone height in both 1- and 3-wall intrabony defects in the ABB + CM group was significantly greater than that in the OFD group (1-wall: 4.99 ± 0.70 mm vs. 3.01 ± 0.37 mm, P < 0.05; 3-wall: 3.11 ± 0.59 mm vs. 2.08 ± 0.24 mm, P < 0.05). The mean new cementum in 1-wall intrabony defects in the ABB + CM group was significantly greater than that in their counterparts in the OFD group (5.08 ± 0.68 mm vs. 1.16 ± 0.38 mm; P < 0.05). Likewise, only the 1-wall intrabony defect model showed a significant difference with respect to junctional epithelium between ABB + CM and OFD groups (0.67 ± 0.23 mm vs. 1.12 ± 0.28 mm, P < 0.05). CONCLUSIONS One-wall intrabony defects treated with ABB and CM did not show less periodontal regeneration than that in 3-wall intrabony defect. The noncontained 1-wall intrabony defect might be a more discriminative defect model for further research into periodontal regeneration.
Collapse
Affiliation(s)
- Sheng-Qi Zang
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Shuai Kang
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Hu
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Meng Wang
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin-Wen Wang
- Department of Oral Medicine, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Tao Zhou
- Nondestructive Lab, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710032, China
| | - Qin-Tao Wang
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
5
|
Zang S, Jin L, Kang S, Hu X, Wang M, Wang J, Chen B, Peng B, Wang Q. Periodontal Wound Healing by Transplantation of Jaw Bone Marrow-Derived Mesenchymal Stem Cells in Chitosan/Anorganic Bovine Bone Carrier Into One-Wall Infrabony Defects in Beagles. J Periodontol 2016; 87:971-81. [PMID: 27153292 DOI: 10.1902/jop.2016.150504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND This study aims to evaluate the performance of chitosan/anorganic bovine bone (C/ABB) scaffold seeded with human jaw bone marrow-derived mesenchymal stem cells (hJBMMSCs) in supporting the healing/repair of 1-wall critical-size periodontal defects. METHODS Physical properties of the C/ABB scaffold were compared with those of the chitosan scaffold. hJBMMSCs were obtained from healthy human alveolar bone during the extraction of third molar impacted teeth. One-wall (7 × 4 mm) infrabony defects were surgically created at the bilateral mandibular third premolars and first molars in six beagles. The defects were randomly assigned to six groups and implanted with different scaffolds: 1) chitosan (C) scaffold; 2) C scaffold with hJBMMSCs (C + cell); 3) C/ABB scaffold (C/ABB); 4) C/ABB scaffold with hJBMMSCs (C/ABB + cell); 5) ABB scaffold (ABB); and 6) open flap debridement (control). The animals were euthanized 8 weeks after surgery for histologic analysis. RESULTS The C/ABB scaffold had a porous structure and increased compressive strength. Both C/ABB and C/ABB + cell exhibited the newly formed cellular mixed-fiber cementum, woven/lamellar bone, and periodontal ligament. Cementum formation was significantly greater in group C/ABB + cell than in group C/ABB (2.64 ± 0.50 mm versus 0.91 ± 0.55 mm, P <0.05). For new bone (NB) height, group C/ABB + cell and C/ABB showed mean ± SD values of 2.83 ± 0.29 mm and 2.65 ± 0.52 mm and for NB area 8.89 ± 1.65 mm and 8.73 ± 1.94 mm(2), respectively. For NB (height and area), there was no significant difference between the two groups. CONCLUSIONS The combination of hJBMMSCs and C/ABB scaffolds could promote periodontal repair. Future studies are expected to further optimize the combination and lead to an ideal periodontal regeneration.
Collapse
Affiliation(s)
- Shengqi Zang
- Department of Periodontology, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China.,Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lei Jin
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shuai Kang
- Department of Periodontology, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xin Hu
- Department of Periodontology, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Meng Wang
- Department of Periodontology, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Jinjin Wang
- Department of Periodontology, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bo Chen
- Department of Operative Dentistry and Endodontics, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University
| | - Bo Peng
- Department of Periodontology, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Qintao Wang
- Department of Periodontology, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Sheikh Z, Sima C, Glogauer M. Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation. MATERIALS 2015. [PMCID: PMC5455762 DOI: 10.3390/ma8062953] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alveolar bone augmentation in vertical dimension remains the holy grail of periodontal tissue engineering. Successful dental implant placement for restoration of edentulous sites depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical techniques used alone or in combination with natural or synthetic graft materials to achieve vertical alveolar bone augmentation. While continuously improving surgical techniques combined with the use of auto- or allografts provide the most predictable clinical outcomes, their success often depends on the status of recipient tissues. The morbidity associated with donor sites for auto-grafts makes these techniques less appealing to both patients and clinicians. New developments in material sciences offer a range of synthetic replacements for natural grafts to address the shortcoming of a second surgical site and relatively high resorption rates. This narrative review focuses on existing techniques, natural tissues and synthetic biomaterials commonly used to achieve vertical bone height gain in order to successfully restore edentulous ridges with implant-supported prostheses.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2, Canada; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-514-224-7490
| | - Corneliu Sima
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; E-Mail:
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2, Canada; E-Mail:
| |
Collapse
|