1
|
Shaz N, Maran S, Genasan K, Choudhary R, Alias R, Swamiappan S, Kamarul T, Raghavendran HRB. Functionalization of poly (lactic-co-glycolic acid) nano‑calcium sulphate and fucoidan 3D scaffold using human bone marrow mesenchymal stromal cells for bone tissue engineering application. Int J Biol Macromol 2024; 256:128059. [PMID: 37989428 DOI: 10.1016/j.ijbiomac.2023.128059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
This study aimed to functionalize a novel porous PLGA (Poly lactic-co-glycolic acid) composite scaffold in combination with nano‑calcium sulphate (nCS) and/or fucoidan (FU) to induce osteogenic differentiation of human bone marrow stromal cells. The composite scaffolds (PLGA-nCS-FU, PLGA-nCS or PLGA-FU) were fabricated and subjected to characterization using Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Scanning electron microscopy (SEM) and Energy Dispersive X-Ray (EDX). The biocompatibility and osteogenic induction potential of scaffolds on seeded human bone marrow derived mesenchymal stromal cells (hBMSCs) were studied using cell attachment and alamar blue cell viability and alkaline phosphatase (ALP), osteocalcin and osteogenic gene expression, respectively. The composition of different groups was reflected in FTIR, XRD and EDX. The SEM micrographs revealed a difference in the surface of the scaffold before and after FU addition. The confocal imaging and SEM micrographs confirmed the attachment of cells onto all three composite scaffolds. However, the AB assay indicated a significant increase (p < 0.05) in cell viability/proliferation seeded on PLGA-nCS-FU on day 21 and 28 as compared with other combinations. A 2-fold significant increase (p < 0.05) in ALP and OC secretion of seeded hBMSCs onto PLGA-nCS-FU was observed when compared with other combinations. A significant increase in RUNX2, OPN, COL-I and ALP genes were observed in the cells seeded on PLGA-nCS-FU on day 14 and 28 as compared with day 0. In conclusion, the incorporation of both Fucoidan and Nano‑calcium sulphate with PLGA showed a promising improvement in the osteogenic potential of hBMSCs. Therefore, PLGA-nCS-FU could be the ideal candidate for subsequent pre-clinical studies to develop a successful bone substitute to repair critical bone defects.
Collapse
Affiliation(s)
- Norshazliza Shaz
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sathiya Maran
- School of Pharmacy, Monash University Malaysia. 16150 Sunway, Malaysia
| | - Krishnamurithy Genasan
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Rajan Choudhary
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Rodianah Alias
- Department of Manufacturing Technology, Faculty of Innovative Design & Technology, University Sultan Zainal Abidin, 21030 Kuala Terengganu, Malaysia
| | - Sasikumar Swamiappan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Tunku Kamarul
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Advanced Medical and Dental Institute (AMDI), University Sains Malaysia, Bertam, Kepala Batas, 13200, Penang, Malaysia
| | - Hanumanth Rao Balaji Raghavendran
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Sri Ramachandra Institute of Higher Education and Research, Biomaterials Laboratory, Faculty of Clinical Research, Central Research Facility, Porur, Chennai 116, India.
| |
Collapse
|
2
|
Shaheen MY. Nanocrystalline hydroxyapatite in periodontal bone regeneration: A systematic review. Saudi Dent J 2022; 34:647-660. [PMID: 36570589 PMCID: PMC9767838 DOI: 10.1016/j.sdentj.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Periodontal diseases when persistent, results in periodontal pockets, attachment loss and progressive destruction of the alveolar bone. Grafting periodontal bone defects with bone substitute biomaterials has proven clinical success for accomplishing reconstruction of lost attachment apparatus, especially in deep intra-bony defects. Nanoparticles (NPs) have been considered indispensable in the future of health sciences and NP based alloplastic graft materials such as nanocrystalline hydroxyapatite (NCHA) hold great promise for regeneration of periodontal defects. Therefore the aim of this review is to evaluate the role of NCHA as an effective substitute for periodontal bone regeneration. Material & methods Popular scientific databases such as PubMed (Medline), Cochrane database of clinical trials, Scopus (Elsevier), Web of science (Clarivate Analytics) and Google Scholar, were searched. The literature search was restricted to published reports in English, between January 2000 and December 2021. Database search returned 1227 results which were screened based on title, author names and publication dates. Results Data from the 14 included studies were reviewed and tabulated. In the present review, all the studies reported using commercially available NCHA for periodontal bone regeneration. Conclusion NCHA is a suitable bone substitute material for periodontal bone regeneration, with outcomes comparable to that of conventionally used graft materials such as bovine xenograft and other synthetic alloplastic materials. While grafting with NCHA in intrabony periodontal defects, after any form of periodontal flap surgery or debridement, significantly improves bone regeneration by 6 months, addition of adjuncts like EMD and PRF further enhance the outcomes.
Collapse
|
3
|
Huang Q, Xu Y, Lu Y, Ren C, Liu L, Li M, Wang Q, Li Z, Xue H, Zhang K, Ma T. Acute shortening and re-lengthening versus antibiotic calcium sulfate-loaded bone transport for the management of large segmental tibial defects after trauma. J Orthop Surg Res 2022; 17:219. [PMID: 35399099 PMCID: PMC8996420 DOI: 10.1186/s13018-022-03109-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of this paper was to compare the clinical effects of acute shortening and re-lengthening (ASR) technique with antibiotic calcium sulfate-loaded bone transport (ACSBT) technique for the management of large segmental tibial defects after trauma. Methods In this retrospective study, 68 patients with large segmental tibial defects were included and completely followed. The bone loss was 3–10 cm. ASR group included 32 patients, while ACSBT group contained 36. There was no significant difference in demographic information between the two groups. The external fixation time (EFT) and external fixation index (EFI) were compared. Bone defect healing and limb functions were evaluated according to the Association for the Study and Application of the Method of Ilizarov (ASAMI) criteria. Complications were compared by Paley classification. Results The mean EFT was 9.2 ± 1.8 months in ASR group and 10.1 ± 2.0 months in ACSBT group, respectively. The mean EFI was 1.5 ± 0.2 month/cm and 1.4 ± 0.3 month/cm. According to the ASAMI criteria, in ASR group bone defect healing was excellent in 22 cases, good in 7 cases and fair in 3 cases. In ACSBT group, it was excellent in 23 cases, good in 11 cases and fair in 2 cases. In ASR group, the limb function was excellent in 15 cases, good in 7 cases and fair in 10 cases, while it was excellent in 14 cases, good in 9 cases and fair in 13 cases with ACSBT group. There was no significant difference in EFI, bone defect healing and limb functions between the two groups (p > 0.05). The mean number of complications per patient in ACSBT group was significantly lower than that in ASR group (p < 0.05). Conclusion Both techniques can be successfully used for the management of large segmental tibial defects after trauma. There was no significant difference in EFI, limb functions and bone defect healing between the two groups. Compared with ASR group, the complication incidence in ACSBT group was lower, especially the infection-related complications. Therefore, for patients with large segmental bone defects caused by infection or osteomyelitis, ACSBT technique could be the first choice.
Collapse
|
4
|
Mohammed AA, Elsherbini AM, Ibrahim FM, El-Meadawy SM, Youssef JM. Biological effect of the nanocrystalline calcium sulfate bone graft in the periodontal regeneration. J Oral Biol Craniofac Res 2021; 11:47-52. [PMID: 33344161 PMCID: PMC7736985 DOI: 10.1016/j.jobcr.2020.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND The ultimate goal of tissue engineering is to reproduce functional alveolar∖Periodontal complex. This study aimed to asses micro- and nano-formulated crystalline calcium sulfate as possible treatment of intrabony defect utilizing an autologous Platelet rich fibrin scaffold. SUBJECTS and Methods: An experimental prospective split mouth design using eight healthy mongrel dog's was conducted. After two months of extracting the first premolar, bilateral intrabony defects were created mesial to the mandibular second premolar. One side was grafted by nanocrystalline calcium sulfate, while, the opposite side was grafted with microcrystalline calcium sulfate graft. Dogs were randomly euthanized after one month (group I) and 3 months (group II). The primary outcomes were the histological changes of new bone formation in hematoxylin and eosin and Masson trichrome stains, while histomorphometric and radiographic analysis were the secondary outcome followed by statistical analysis (P value was set at .05). RESULTS There was a significant increase in the percentage of bone formation in relation to defect height in nanocrystalline compared to microcrystalline form after one month and three months in both histological (p-values of <0.0001) and radiographic results (p-values of <0.0001). CONCLUSION Nanocrystalline calcium sulfate presented a significant enhanced periodontal regeneration compared to the microcrystalline form.
Collapse
Affiliation(s)
- Abdulkarem A. Mohammed
- Oral Medicine and Periodontology, Faculty of Dentistry, Thamar University, Yemen
- Oral Medicine and Periodontology, Faculty of Dentistry, Mansoura University, Egypt
| | | | | | - Samah M. El-Meadawy
- Oral Medicine and Periodontology, Faculty of Dentistry, Mansoura University, Egypt
| | - Jilan M. Youssef
- Oral Medicine and Periodontology, Faculty of Dentistry, Mansoura University, Egypt
| |
Collapse
|
5
|
Moothedath M, Moothedath M, Jairaj A, Harshitha B, Baba SM, Khateeb SU. Role of Nanotechnology in Dentistry: Systematic Review. J Int Soc Prev Community Dent 2019; 9:535-541. [PMID: 32039072 PMCID: PMC6905313 DOI: 10.4103/jispcd.jispcd_223_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/20/2019] [Indexed: 11/04/2022] Open
Abstract
Aim: This systematic review aimed to provide an overview of role of nanotechnology in dentistry and to evaluate its applicability in prevention and treatment of oral diseases. Materials and Methods: A systematic literature search was conducted in 2 electronic databases – PMC and Cochrane. The search was restricted to the articles published during the last 5 years. First-level screening was done to select articles for the review on the basis of title and abstract. Then, full texts of selected articles were studied, and relevant articles were selected to be included in this review. Articles selected were critically appraised to evaluate their quality. Results: Literature search revealed 837 articles in PMC, 15 in Clinical trial register of US National library, and 43 in Cochrane. Additional 6 articles were identified by hand search. Eleven clinical trials were included in this review. Conclusion: Advancement in nanotechnology has greatly influenced dental disease prevention and therapy significantly.
Collapse
Affiliation(s)
- Muhamood Moothedath
- Department of Oral and Dental Health, College of Applied Health Sciences in Ar Rass, Qassim University, Saudi Arabia
| | - Muhaseena Moothedath
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abhishek Jairaj
- Department of Prosthodontist, Faculty of Dentistry, AIMST University, Bedong, Kedah, Malaysia
| | - B Harshitha
- Department of Periodontics, Sri Sai College of Dental Surgery, Hyderabad, Telangana, India
| | - Suheel Manzoor Baba
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Shafait Ullah Khateeb
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
6
|
Mishra PRN, Kolte AP, Kolte RA, Pajnigara NG, Shah KK. Comparative evaluation of open flap debridement alone and in combination with anorganic bone matrix/cell-binding peptide in the treatment of human infrabony defects: A randomized clinical trial. J Indian Soc Periodontol 2019; 23:42-47. [PMID: 30692742 PMCID: PMC6334540 DOI: 10.4103/jisp.jisp_339_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: The synthetic anorganic bone matrix/cell-binding peptide (ABM/P-15) has displayed an increased fibroblast migration and attachment with bone graft material, thus enhancing periodontal regeneration. The objective of the present study was to evaluate and to correlate the efficacy of open flap debridement (OFD) with and without ABM/P-15 in the treatment of human infrabony periodontal defects. Materials and Methods: A total of 20 chronic periodontitis patients with equal number infrabony defects were randomly selected and assigned into two groups depending on the treatment received: Control group (treated with OFD) and Test group (treated with OFD + ABM/P-15). Clinical parameters recorded included plaque index, gingival index, probing pocket depth (PPD), clinical attachment level (CAL), gingival recession, and radiographic defect depth (RDD) which were evaluated at baseline and 6 months postsurgically. Results: When compared to baseline, both the treatment groups demonstrated improvements in the clinical parameters at 6 months. Test group exhibited a mean PPD reduction of 4.15 ± 1.04 mm, CAL gain of 3.10 ± 1.42 mm, and reduction in RDD of 1.90 ± 0.72 mm postoperatively at 6 months. In contrast to Control group, the Test group showed greater reduction in PPD (P < 0.05) which was statistically significant, greater CAL gain and greater mean RDD reduction (P < 0.001) which was highly significant. Conclusion: In the surgical management of periodontal infrabony defects, Test group elicited in statistically significant PPD reduction, CAL gain, and better infrabony defect fill at 6 months’ postoperatively.
Collapse
Affiliation(s)
- Pratima Ram Niwas Mishra
- Department of Periodontics and Implantology, VSPM Dental College and Research Centre, Nagpur, Maharashtra, India
| | - Abhay Pandurang Kolte
- Department of Periodontics and Implantology, VSPM Dental College and Research Centre, Nagpur, Maharashtra, India
| | - Rajashri Abhay Kolte
- Department of Periodontics and Implantology, VSPM Dental College and Research Centre, Nagpur, Maharashtra, India
| | - Natasha Gev Pajnigara
- Department of Periodontics and Implantology, VSPM Dental College and Research Centre, Nagpur, Maharashtra, India
| | - Kanan Ketan Shah
- Department of Periodontics and Implantology, VSPM Dental College and Research Centre, Nagpur, Maharashtra, India
| |
Collapse
|