1
|
Maccarrone G, Saporito G, Sucapane P, Rizi C, Bruno F, Catalucci A, Pistoia ML, Splendiani A, Ricci A, Di Cesare E, Rizzo M, Totaro R, Pistoia F. Gender disparity in access to advanced therapies for patients with Parkinson's disease: a retrospective real-word study. Front Neurol 2024; 15:1429251. [PMID: 39385822 PMCID: PMC11461232 DOI: 10.3389/fneur.2024.1429251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Background Gender differences in the access to advanced therapies for Parkinson's disease (PD) are poorly investigated. Objective The objective of this study was to investigate the presence of any gender disparity in the access to advanced therapies for PD. Design Retrospective study. Methods Data from patients with consistent access to the Parkinson's and Movement Disorder Center of L'Aquila over the last 10-year period were screened. Patients selected for advanced therapies were included. Results Out of 1,252 patients, 200 (mean age ± SD 71.02 ± 9.70; 72% males; median Hoen Yahr level: 3, minimum 1 maximum 5) were selected for advanced therapies: 133 for Magnetic Resonance guided Focused Ultrasound (MRgFUS) thalamotomy (mean age ± SD 70.0 ± 8.9; 77% males), 49 for Levodopa/Carbidopa Intestinal Gel (LCIG) infusion (mean age ± SD 74.3 ± 11.4; 59% males), 12 for Deep Brain Stimulation (DBS) (mean age ± SD 71.2 ± 6.3; 75% males), and 7 for Continuous Subcutaneous Apomorphine Infusion (CSAI) (mean age ± SD 69.7 ± 5.5; 43% males). No sex differences were found in relation to age (MRgFUS group: males vs. females 70.2 ± 8.9 vs. 70.8 ± 8.9, p-value = 0.809; LCIG group: males vs. females 73.5 ± 13.0 vs. 75.5 ± 8.5, p-value = 0.557; DBS group: males vs. females 77.2 ± 8.1 vs. 67.3 ± 8.6, p-value = 0.843; CSAI group: males vs. females 73.3 ± 4.0 vs. 67.0 ± 5.2, p-value = 0.144) and disease duration (MRgFUS group: males vs. females 8.3 ± 4.4 vs. 9.6 ± 6.7, p-value = 0.419; LCIG group: males vs. females 14.5 ± 5.81 vs. 17.3 ± 5.5; p-value = 0.205; DBS group: males vs. females 15.0 ± 9.6 vs. 15.5 ± 7.7, p-value = 0.796; CSAI group: males vs. females 11.7 ± 3.7 vs. 10.3 ± 3.7, p-value = 0.505). Conclusion The predominance of males is higher than that expected based on the higher prevalence of PD in men. Women are less confident in selecting advanced therapies during the natural progression of their disease. Factors accounting for this discrepancy deserve further investigation.
Collapse
Affiliation(s)
- Giuseppe Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Gennaro Saporito
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Chiara Rizi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | | | | | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandro Ricci
- Department of Neurosurgery, San Salvatore Hospital, L’Aquila, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Marina Rizzo
- Department of Neurology, Villa Sofia, Palermo, Italy
| | - Rocco Totaro
- Department of Neurology, San Salvatore Hospital, L’Aquila, Italy
| | - Francesca Pistoia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Department of Neurology, San Salvatore Hospital, L’Aquila, Italy
| |
Collapse
|
2
|
Wang X, Zhou C, Li Y, Yang H, Sun X, Li S, Li J. Sex-dependent associations of serum BDNF, glycolipid metabolism and cognitive impairments in Parkinson's disease with depression: a comprehensive analysis. J Neural Transm (Vienna) 2024; 131:1047-1057. [PMID: 38967809 DOI: 10.1007/s00702-024-02802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) and glycolipid metabolism have been implicated in cognitive impairments and depression among Parkinson's disease (PD). However, the role of sex differences in this relationship remains elusive. This study aimed to investigate the potential sex differences in the link between serum BDNF levels, glycolipid metabolism and cognitive performance among depressive PD patients. PD patients comprising 108 individuals with depression and 108 without depression were recruited for this study. Cognitive function was assessed using the Montreal Cognitive Assessment Beijing version (MOCA-BJ). The severity of depressive symptoms was assessed using the Hamilton Depression Rating Scale (HAMD-17), while motor symptoms were evaluated using the Revised Hoehn and Yahr rating scale (H-Y) and the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III). Laboratory testing and enzyme-linked immunosorbent assay (ELISA) are used to measure serum levels of glycolipid metabolism and BDNF. Females showed superior performance in delayed recall (all p < 0.05), male PD patients exhibited higher scores in naming tasks compared to females in non-depression group. There was no sex differences in serum BDNF levels between depression and non-depression groups. Liner regression analysis indicated BDNF as an independent risk factor for language deficits in male PD patients with depression (p < 0.05), while cholesterol (CHOL) emerged as a cognitive influencing factor, particularly in delayed recall among male PD patients with depression (p < 0.05). Our study reveals extensive cognitive impairments in PD patients with depression. Moreover, BDNF and CHOL may contribute to the pathological mechanisms underlying cognitive deficits, particularly in male patients with depression.
Collapse
Affiliation(s)
- Xinxu Wang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
- Brain Assessment & Intervention Laboratory, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Chi Zhou
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
- Tongling Third People's Hospital, Tongling, 244000, China
| | - Yanzhe Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
- Brain Assessment & Intervention Laboratory, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Hechao Yang
- Brain Assessment & Intervention Laboratory, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
- Department of Psychiatry, Tianjin Huanhu Hospital, Tianjin, 300222, China
| | - Xiaoxiao Sun
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Shen Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China.
- Brain Assessment & Intervention Laboratory, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China.
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China.
| |
Collapse
|
3
|
Bishay AE, Hughes NC, Zargari M, Paulo DL, Bishay S, Lyons AT, Morkos MN, Ball TJ, Englot DJ, Bick SK. Disparities in Access to Deep Brain Stimulation for Parkinson's Disease and Proposed Interventions: A Literature Review. Stereotact Funct Neurosurg 2024; 102:179-194. [PMID: 38697047 DOI: 10.1159/000538748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/28/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective therapy for Parkinson's disease (PD), but disparities exist in access to DBS along gender, racial, and socioeconomic lines. SUMMARY Women are underrepresented in clinical trials and less likely to undergo DBS compared to their male counterparts. Racial and ethnic minorities are also less likely to undergo DBS procedures, even when controlling for disease severity and other demographic factors. These disparities can have significant impacts on patients' access to care, quality of life, and ability to manage their debilitating movement disorders. KEY MESSAGES Addressing these disparities requires increasing patient awareness and education, minimizing barriers to equitable access, and implementing diversity and inclusion initiatives within the healthcare system. In this systematic review, we first review literature discussing gender, racial, and socioeconomic disparities in DBS access and then propose several patient, provider, community, and national-level interventions to improve DBS access for all populations.
Collapse
Affiliation(s)
- Anthony E Bishay
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA,
| | - Natasha C Hughes
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael Zargari
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Danika L Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Steven Bishay
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Mariam N Morkos
- Arizona College of Osteopathic Medicine, Glendale, Arizona, USA
| | - Tyler J Ball
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Sarah K Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Hong J, Xie H, Chen Y, Liu D, Wang T, Xiong K, Mao Z. Effects of STN-DBS on cognition and mood in young-onset Parkinson's disease: a two-year follow-up. Front Aging Neurosci 2024; 15:1177889. [PMID: 38292047 PMCID: PMC10824910 DOI: 10.3389/fnagi.2023.1177889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Background The effects of subthalamic nucleus deep brain stimulation (STN-DBS) on the cognition and mood of patients with PD are still not uniformly concluded, and young-onset Parkinson's disease (YOPD) is even less explored. Objective To observe the effectiveness of STN-DBS on the cognition and mood of YOPD patients. Methods A total of 27 subjects, with a mean age at onset of 39.48 ± 6.24 and age at surgery for STN-DBS of 48.44 ± 4.85, were followed up preoperatively and for 2 years postoperatively. Using the Unified Parkinson disease rating scale (UPDRS), H&Y(Hoehn and Yahr stage), 39-Item Parkinson's Disease Questionnaire (PDQ-39), Mini-mental state examination (MMSE), Montreal Cognitive Assessment (MoCA), Hamilton depression scale (HAMD), Hamilton anxiety scale (HAMA) to assess motor, cognition, and mood. Results At the 2-year follow-up after STN-DBS, YOPD patients showed significant improvements in motor and quality of life (UPDRS III: p < 0.001, PDQ-39: p < 0.001); overall cognition was not significantly different from preoperative (MMSE: p = 0.275, MoCA: p = 0.913), although language function was significantly impaired compared to preoperative (MMSE: p = 0.004, MoCA: p = 0.009); depression and anxiety symptoms also improved significantly (HAMD: p < 0.001, HAMA: p < 0.001) and the depression score correlated significantly with motor (preoperative: r = 0.493, p = 0.009), disease duration (preoperative: r = 0.519, p = 0.006; postoperative: r = 0.406, p = 0.036) and H&Y (preoperative: r = 0.430, p = 0.025; postoperative: r = 0.387, p = 0.046); total anxiety scores were also significantly correlated with motor (preoperative: r = 0.553, p = 0.003; postoperative: r = 0.444, p = 0.020), disease duration (preoperative: r = 0.417, p = 0.031), PDQ-39 (preoperative: r = 0.464, p = 0.015) and H&Y (preoperative: r = 0.440, p = 0.022; postoperative: r = 0.526, p = 0.005). Conclusion STN-DBS is a safe and effective treatment for YOPD. The mood improved significantly, and overall cognition was not impaired, were only verbal fluency decreased but did not affect the improvement in quality of life.
Collapse
Affiliation(s)
- Jun Hong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Huimin Xie
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuhua Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Di Liu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Tianyu Wang
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
| | - Zhiqi Mao
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Hendriks M, Vinke RS, Georgiev D. Gender discrepancies and differences in motor and non-motor symptoms, cognition, and psychological outcomes in the treatment of Parkinson's disease with subthalamic deep brain stimulation. Front Neurol 2024; 14:1257781. [PMID: 38259647 PMCID: PMC10800523 DOI: 10.3389/fneur.2023.1257781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Available data suggest that there may be gender differences in the effect of STN-DBS in the treatment of Parkinson's disease (PD). The aim of this study was to review data on gender discrepancies and gender differences in clinical outcomes in PD patients treated with deep brain stimulation of the subthalamic nucleus (STN-DBS). Included were original studies that specifically examined gender discrepancies or gender differences in PD patients with STN-DBS. Men receive more DBS than women, for various indications. The decision-making process for DBS in women compared to men is more influenced by personal preferences and external factors. Motor symptoms improve in both genders, but bradykinesia improves more in men. The postoperative reduction of the levodopa equivalent daily dose seems to be more pronounced in men. Men show more cognitive deterioration and less improvement than women after STN-DBS. Women show more depressive symptoms before surgery, but they improve similarly to men. Men show more improvement in impulsivity and less decrease in impulsive behaviour symptoms than women. Anxiety and personality traits remain unchanged in both genders. Voice quality improves more in men and deteriorates less often than in women. Men gain fat-free mass and fat mass, but women only gain fat mass. Regarding sexual function the evidence is inconsistent. More urinary symptoms improve in women than in men. Pain and restless leg syndrome seems to improve more in men. Regarding quality of life, the evidence seems to be inconsistent, and activities of daily living seems to improve in both genders. Better prospective controlled studies, focusing directly on gender differences in PD patients treated with STN-DBS, are needed to better explain gender differences in STN-DBS for PD.
Collapse
Affiliation(s)
- Martijn Hendriks
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurosurgery, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Ruben Saman Vinke
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurosurgery, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Laboratory for Artificial Intelligence, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Patel K, Kalikavil Puthanveedu D, Vijayaraghavan A, Kesavapisharady K, Sarma G, Sarma SP, Krishnan S. Deep Brain Stimulation for Parkinson's Disease-the Developing World's Perspective. Mov Disord Clin Pract 2023; 10:1750-1758. [PMID: 38094655 PMCID: PMC10715347 DOI: 10.1002/mdc3.13901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/25/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2024] Open
Abstract
Background Deep brain stimulation (DBS) is the most widely used device-assisted therapy in patients with moderately advanced stages of Parkinson's disease (PD) experiencing motor complications. Only a minority of eligible patients get the opportunity to undergo DBS in the developing world. Objectives To examine the proportion and characteristics of patients with motor complications of PD who are willing for DBS and who undergo surgery. Methods Patients with motor complications of PD eligible for DBS over a five-year study period (2016-2020) were included. The demographic, clinical and socio-economic characteristics and information on their status in 2021 were collected and analyzed. Results Among 1017 patients, 223 had motor symptoms qualifying for DBS and follow-up information available. Only 78 (35%) opted for surgery. The willing patients had higher socioeconomic status, were older and had longer duration of PD and motor complications, more freezing of gait, cognitive symptoms, and neuropsychiatric disturbances. 37 of them were found unfit during pre-operative work-up; only 41 (18%) with motor complications were finally taken up for DBS. Age, duration or severity of motor symptoms did not differ between patients who were finally selected for surgery and those who were not. Conclusions Less than one-fifth of our patients with motor complications of PD finally underwent DBS. The patients appeared to wait till the late stages of PD, before making a decision on availing surgical treatment. The delay resulted in nearly half of them being found unfit in pre-operative work-up. Our findings may enable clinicians to counsel eligible patients more efficiently.
Collapse
Affiliation(s)
- Khushboo Patel
- Comprehensive Care Centre for Movement DisordersSree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST)ThiruvananthapuramIndia
| | - Divya Kalikavil Puthanveedu
- Comprehensive Care Centre for Movement DisordersSree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST)ThiruvananthapuramIndia
| | - Asish Vijayaraghavan
- Comprehensive Care Centre for Movement DisordersSree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST)ThiruvananthapuramIndia
| | - Krishnakumar Kesavapisharady
- Comprehensive Care Centre for Movement DisordersSree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST)ThiruvananthapuramIndia
| | - Gangadhara Sarma
- Comprehensive Care Centre for Movement DisordersSree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST)ThiruvananthapuramIndia
| | - Sankara P. Sarma
- Achutha Menon Centre for Health Science StudiesSree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
| | - Syam Krishnan
- Comprehensive Care Centre for Movement DisordersSree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST)ThiruvananthapuramIndia
| |
Collapse
|
7
|
Hosseinzadeh S, Afshari S, Molaei S, Rezaei N, Dadkhah M. The role of genetics and gender specific differences in neurodegenerative disorders: Insights from molecular and immune landscape. J Neuroimmunol 2023; 384:578206. [PMID: 37813041 DOI: 10.1016/j.jneuroim.2023.578206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Neurodegenerative disorders (NDDs) are the most common neurological disorders with high prevalence and have significant socioeconomic implications. Understanding the underlying cellular and molecular mechanisms associated with the immune system can be effective in disease etiology, leading to more effective therapeutic approaches for both females and males. The central nervous system (CNS) actively participates in immune responses, both within and outside the CNS. Immune system activation is a common feature in NDDs. Gender-specific factors play a significant role in the prevalence, progression, and manifestation of NDDs. Neuroinflammation, in both inflammatory neurological and neurodegenerative conditions, is defined by the triggering of microglia and astrocyte cell activation. This results in the secretion of pro-inflammatory cytokines and chemokines. Numerous studies have documented the role of neuroinflammation in neurological diseases, highlighting the involvement of immune signaling pathways in disease development. Converging evidence support immune system involvement during neurodegeneration in NDDs. In this review, we summarize emerging evidence that reveals gender-dependent differences in immune responses related to NDDs. Also, we highlight sex differences in immune responses and discuss how these sex-specific influences can increase the risk of NDDs. Understanding the role of gender-specific factors can aid in developing targeted therapeutic strategies and improving patient outcomes. Ultimately, the better understanding of these mechanisms contributed to sex-dependent immune response in NDDs, can be critically usful in targeting of immune signaling cascades in such disorders. In this regard, sex-related immune responses in NDDs may be promising and effective targets in therapeutic strategies.
Collapse
Affiliation(s)
- Shahnaz Hosseinzadeh
- Department of Microbiology & Immunology, School of Medicine, Ardabil University of Medical Sciences, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
8
|
Memon AA, Gelman K, Melott J, Billings R, Fullard M, Catiul C, Miocinovic S, Amara AW. A systematic review of health disparities research in deep brain stimulation surgery for Parkinson's disease. Front Hum Neurosci 2023; 17:1269401. [PMID: 37964803 PMCID: PMC10641459 DOI: 10.3389/fnhum.2023.1269401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
Background Deep brain stimulation (DBS) is the primary surgical intervention for Parkinson's disease (PD) patients with insufficient response to medication, significantly improving motor symptoms and quality of life. Despite FDA approval for over two decades, access to this therapy remains limited. This systematic review aims to evaluate the influence of gender, race/ethnicity, socioeconomic status, and age on health disparities associated with DBS for PD, providing an overview of current research in this field. Methods A systematic literature search was conducted in PubMed/MEDLINE, Embase, Web of Science and Cochrane databases from 1960 to September 12th, 2023, following Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Studies that examine the disparities in accessing DBS among patients with PD were included, comparing different demographic factors. Findings were synthesized and presented narratively to identify and understand DBS disparities. Results After screening for relevance, 25 studies published between 1960 and 2023 were included, with 16 studies meeting full-text review criteria. While reviewing the references of the 16 articles, two additional studies were included, bringing the total number of included studies to 18. Most studies originated from the United States (44%). The identified studies were categorized as identifying disparities, understanding disparities, or reducing disparities. The majority focused on identifying disparities (72%), while fewer studies delved into understanding the underlying factors (28%). No studies evaluated strategies for reducing disparities. The findings indicate that elderly, female, and Black people, as well as those from low socioeconomic backgrounds and developing countries face greater obstacles in accessing DBS for PD. Conclusion This study highlights factors contributing to disparities in DBS utilization for PD, including race, gender, and socioeconomic status. Public health policymakers, practitioners, and clinicians should recognize these inequalities and work toward reducing disparities, particularly among vulnerable populations.
Collapse
Affiliation(s)
- Adeel A. Memon
- Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Kate Gelman
- School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Joseph Melott
- School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Rebecca Billings
- UAB Libraries, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michelle Fullard
- Department of Neurology, University of Colorado, Aurora, CO, United States
| | - Corina Catiul
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Amy W. Amara
- Department of Neurology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
9
|
Raheel K, Deegan G, Di Giulio I, Cash D, Ilic K, Gnoni V, Chaudhuri KR, Drakatos P, Moran R, Rosenzweig I. Sex differences in alpha-synucleinopathies: a systematic review. Front Neurol 2023; 14:1204104. [PMID: 37545736 PMCID: PMC10398394 DOI: 10.3389/fneur.2023.1204104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
Background Past research indicates a higher prevalence, incidence, and severe clinical manifestations of alpha-synucleinopathies in men, leading to a suggestion of neuroprotective properties of female sex hormones (especially estrogen). The potential pathomechanisms of any such effect on alpha-synucleinopathies, however, are far from understood. With that aim, we undertook to systematically review, and to critically assess, contemporary evidence on sex and gender differences in alpha-synucleinopathies using a bench-to-bedside approach. Methods In this systematic review, studies investigating sex and gender differences in alpha-synucleinopathies (Rapid Eye Movement (REM) Behavior Disorder (RBD), Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB), Multiple System Atrophy (MSA)) from 2012 to 2022 were identified using electronic database searches of PubMed, Embase and Ovid. Results One hundred sixty-two studies were included; 5 RBD, 6 MSA, 20 DLB and 131 PD studies. Overall, there is conclusive evidence to suggest sex-and gender-specific manifestation in demographics, biomarkers, genetics, clinical features, interventions, and quality of life in alpha-synucleinopathies. Only limited data exists on the effects of distinct sex hormones, with majority of studies concentrating on estrogen and its speculated neuroprotective effects. Conclusion Future studies disentangling the underlying sex-specific mechanisms of alpha-synucleinopathies are urgently needed in order to enable novel sex-specific therapeutics.
Collapse
Affiliation(s)
- Kausar Raheel
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Gemma Deegan
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- BRAIN, Imaging Centre, CNS, King’s College London, London, United Kingdom
| | - Irene Di Giulio
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Diana Cash
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- BRAIN, Imaging Centre, CNS, King’s College London, London, United Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Katarina Ilic
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- BRAIN, Imaging Centre, CNS, King’s College London, London, United Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Valentina Gnoni
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, Lecce, Italy
| | - K. Ray Chaudhuri
- Movement Disorders Unit, King’s College Hospital and Department of Clinical and Basic Neurosciences, Institute of Psychiatry, Psychology and Neuroscience and Parkinson Foundation Centre of Excellence, King’s College London, London, United Kingdom
| | - Panagis Drakatos
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
10
|
Trevarrow MP, Munoz MJ, Rivera YM, Arora R, Drane QH, Rosenow JM, Sani SB, Pal GD, Verhagen Metman L, Goelz LC, Corcos DM, David FJ. The Effects of Subthalamic Nucleus Deep Brain Stimulation and Retention Delay on Memory-Guided Reaching Performance in People with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:917-935. [PMID: 37522216 PMCID: PMC10578280 DOI: 10.3233/jpd-225041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) improves intensive aspects of movement (velocity) in people with Parkinson's disease (PD) but impairs the more cognitively demanding coordinative aspects of movement (error). We extended these findings by evaluating STN-DBS induced changes in intensive and coordinative aspects of movement during a memory-guided reaching task with varying retention delays. OBJECTIVE We evaluated the effect of STN-DBS on motor control during a memory-guided reaching task with short and long retention delays in participants with PD and compared performance to healthy controls (HC). METHODS Eleven participants with PD completed the motor section of the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS III) and performed a memory-guided reaching task under four different STN-DBS conditions (DBS-OFF, DBS-RIGHT, DBS-LEFT, and DBS-BOTH) and two retention delays (0.5 s and 5 s). An additional 13 HC completed the memory-guided reaching task. RESULTS Unilateral and bilateral STN-DBS improved the MDS-UPDRS III scores. In the memory-guided reaching task, both unilateral and bilateral STN-DBS increased the intensive aspects of movement (amplitude and velocity) in the direction toward HC but impaired coordinative aspects of movement (error) away from the HC. Furthermore, movement time was decreased but reaction time was unaffected by STN-DBS. Shorter retention delays increased amplitude and velocity, decreased movement times, and decreased error, but increased reaction times in the participants with PD. There were no interactions between STN-DBS condition and retention delay. CONCLUSION STN-DBS may affect cognitive-motor functioning by altering activity throughout cortico-basal ganglia networks and the oscillatory activity subserving them.
Collapse
Affiliation(s)
- Michael P. Trevarrow
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Miranda J. Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Yessenia M. Rivera
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Rishabh Arora
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Quentin H. Drane
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sepehr B. Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA
| | - Gian D. Pal
- Department of Neurology, Division of Movement Disorders, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Leonard Verhagen Metman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lisa C. Goelz
- Department of Kinesiology and Nutrition, UIC College of Applied Health Sciences, Chicago, IL, USA
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
- McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Fabian J. David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
11
|
Zhu GY, Zhang JG, Yuan TS, Chen YC, Liu DF, Ma RY, Zhang X, Du TT. Sex modulates the outcome of subthalamic nucleus deep brain stimulation in patients with Parkinson’s disease. Neural Regen Res 2023; 18:901-907. [DOI: 10.4103/1673-5374.353506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
David FJ, Rivera YM, Entezar TK, Arora R, Drane QH, Munoz MJ, Rosenow JM, Sani SB, Pal GD, Verhagen-Metman L, Corcos DM. Encoding type, medication, and deep brain stimulation differentially affect memory-guided sequential reaching movements in Parkinson's disease. Front Neurol 2022; 13:980935. [PMID: 36324383 PMCID: PMC9618698 DOI: 10.3389/fneur.2022.980935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Memory-guided movements, vital to daily activities, are especially impaired in Parkinson's disease (PD). However, studies examining the effects of how information is encoded in memory and the effects of common treatments of PD, such as medication and subthalamic nucleus deep brain stimulation (STN-DBS), on memory-guided movements are uncommon and their findings are equivocal. We designed two memory-guided sequential reaching tasks, peripheral-vision or proprioception encoded, to investigate the effects of encoding type (peripheral-vision vs. proprioception), medication (on- vs. off-), STN-DBS (on- vs. off-, while off-medication), and compared STN-DBS vs. medication on reaching amplitude, error, and velocity. We collected data from 16 (analyzed n = 7) participants with PD, pre- and post-STN-DBS surgery, and 17 (analyzed n = 14) healthy controls. We had four important findings. First, encoding type differentially affected reaching performance: peripheral-vision reaches were faster and more accurate. Also, encoding type differentially affected reaching deficits in PD compared to healthy controls: peripheral-vision reaches manifested larger deficits in amplitude. Second, the effect of medication depended on encoding type: medication had no effect on amplitude, but reduced error for both encoding types, and increased velocity only during peripheral-vision encoding. Third, the effect of STN-DBS depended on encoding type: STN-DBS increased amplitude for both encoding types, increased error during proprioception encoding, and increased velocity for both encoding types. Fourth, STN-DBS was superior to medication with respect to increasing amplitude and velocity, whereas medication was superior to STN-DBS with respect to reducing error. We discuss our findings in the context of the previous literature and consider mechanisms for the differential effects of medication and STN-DBS.
Collapse
Affiliation(s)
- Fabian J. David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yessenia M. Rivera
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tara K. Entezar
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, United States
| | - Rishabh Arora
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Quentin H. Drane
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Miranda J. Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sepehr B. Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Gian D. Pal
- Department of Neurology, Rutgers University, New Brunswick, NJ, United States
| | - Leonard Verhagen-Metman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
13
|
Arabia G, De Martino A, Moro E. Sex and gender differences in movement disorders: Parkinson's disease, essential tremor, dystonia and chorea. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:101-128. [PMID: 36038202 DOI: 10.1016/bs.irn.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sex and gender-based differences in epidemiology, clinical features and therapeutical responses are emerging in several movement disorders, even though they are still not widely recognized. In this chapter, we summarize the most relevant evidence concerning these differences in Parkinson's disease, essential tremor, dystonia and chorea. Indeed, both sex-related biological (hormonal levels fluctuations) and gender-related variables (socio-cultural and environmental factors) may differently impact symptoms manifestation and severity, phenotype and disease progression of movement disorders on men and women. Moreover, sex differences in treatment responses should be taken into account in any therapeutical planning. Physicians need to be aware of these major differences between men and women that will eventually have a major impact on better tailoring prevention, treatment, or even delaying progression of the most common movement disorders.
Collapse
Affiliation(s)
- Gennarina Arabia
- Magna Graecia University, Movement Disorders Center, Neurology Unit, Catanzaro, Italy.
| | - Antonio De Martino
- Magna Graecia University, Movement Disorders Center, Neurology Unit, Catanzaro, Italy
| | - Elena Moro
- Grenoble Alpes University, CHU of Grenoble, Division of Neurology, Grenoble Institute of Neurosciences, Grenoble, France
| |
Collapse
|
14
|
Gender gap in deep brain stimulation for Parkinson's disease. NPJ Parkinsons Dis 2022; 8:47. [PMID: 35444187 PMCID: PMC9021281 DOI: 10.1038/s41531-022-00305-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown less access to deep brain stimulation (DBS) for Parkinson’s disease (PD) in women compared to men raising concerns about a potential gender gap resulting from nonclinical factors or gender differences in clinical efficacy for postoperative quality of life (QoL), motor, and nonmotor symptoms (NMS) outcomes. This was a cross-sectional and a longitudinal, prospective, observational, controlled, quasi-experimental, international multicenter study. A total sample size of 505 consisted of 316 consecutively referred patients for DBS indication evaluation at the University Hospital Cologne (01/2015–09/2020) and 189 consecutively treated patients at DBS centers in the University Hospitals Cologne and Marburg, Salford’s Royal Hospital Manchester, and King’s College Hospital London. In the cross-sectional cohort, we examined gender proportions at referral, indication evaluations, and DBS surgery. In the longitudinal cohort, clinical assessments at preoperative baseline and 6-month follow-up after surgery included the PD Questionnaire-8, NMSScale, Scales for Outcomes in PD-motor scale, and levodopa-equivalent daily dose. Propensity score matching resulted in a pseudo-randomized sub-cohort balancing baseline demographic and clinical characteristics between women with PD and male controls. 316 patients were referred for DBS. 219 indication evaluations were positive (women n = 102, respectively n = 82). Women with PD were disproportionally underrepresented in referrals compared to the general PD population (relative risk [RR], 0.72; 95%CI, 0.56–0.91; P = 0.002), but more likely to be approved for DBS than men (RR, 1.17; 95%CI, 1.03–1.34; P = 0.029). Nonetheless, their total relative risk of undergoing DBS treatment was 0.74 (95%CI, 0.48–1.12) compared to men with PD. At baseline, women had longer disease duration and worse dyskinesia. Exploring QoL domains, women reported worse mobility and bodily discomfort. At follow-up, all main outcomes improved equally in both genders. Our study provides evidence of a gender gap in DBS for PD. Women and men with PD have distinct preoperative nonmotor and motor profiles. We advocate that more focus should be directed toward the implementation of gender equity as both genders benefit from DBS with equal clinical efficacy. This study provides Class II evidence of beneficial effects of DBS in women with PD compared to male controls.
Collapse
|
15
|
Golfrè Andreasi N, Romito LM, Telese R, Cilia R, Elia AE, Novelli A, Tringali G, Messina G, Levi V, Devigili G, Rinaldo S, Franzini AA, Eleopra R. Short- and long-term motor outcome of STN-DBS in Parkinson's Disease: focus on sex differences. Neurol Sci 2021; 43:1769-1781. [PMID: 34499244 DOI: 10.1007/s10072-021-05564-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Subthalamic nucleus deep brain stimulation (STN-DBS) is an established treatment for patients with Parkinson's disease (PD) with motor complications; the contribution of sex in determining the outcome is still not understood. METHODS We included 107 patients (71 males) with PD consecutively implanted with STN-DBS at our center. We reviewed patient charts from our database and retrospectively collected demographical and clinical data at baseline and at three follow-up visits (1, 5 and 10 years). RESULTS We found a long-lasting effect of DBS on motor complications, despite a progressive worsening of motor performances in the ON medication condition. Bradykinesia and non-dopaminergic features seem to be the major determinant of this progression. Conversely to males, females showed a trend towards worsening in bradykinesia already at 1-year follow-up and poorer scores in non-dopaminergic features at 10-year follow-up. Levodopa Equivalent Daily Dose (LEDD) was significantly reduced after surgery compared to baseline values; however, while in males LEDD remained significantly lower than baseline even 10 years after surgery, in females LEDD returned at baseline values. Males showed a sustained effect on dyskinesias, but this benefit was less clear in females; the total electrical energy delivered was consistently lower in females compared to males. The profile of adverse events did not appear to be influenced by sex. CONCLUSION Our data suggest that there are no major differences on the motor effect of STN-DBS between males and females. However, there may be some slight differences that should be specifically investigated in the future and that may influence therapeutic decisions in the chronic follow-up.
Collapse
Affiliation(s)
- Nico Golfrè Andreasi
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy.
| | - Luigi Michele Romito
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Roberta Telese
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Roberto Cilia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Antonio Emanuele Elia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Alessio Novelli
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Giovanni Tringali
- Neurosurgery Department, Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Giuseppe Messina
- Neurosurgery Department, Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Vincenzo Levi
- Neurosurgery Department, Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Grazia Devigili
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Sara Rinaldo
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Angelo Amato Franzini
- Neurosurgery Department, Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| | - Roberto Eleopra
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via G. Celoria 11, 20133, Milano, Italy
| |
Collapse
|
16
|
Khazen O, DiMarzio M, Platanitis K, Grimaudo HC, Hancu M, Shao MM, Staudt MD, Maguire L, Sukul VV, Durphy J, Hanspal EK, Adam O, Molho E, Pilitsis JG. Sex-specific effects of subthalamic nucleus stimulation on pain in Parkinson's disease. J Neurosurg 2021; 135:629-636. [PMID: 33036000 DOI: 10.3171/2020.6.jns201126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/08/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is known to reduce motor symptoms of Parkinson's disease (PD). The effects of DBS on various nonmotor symptoms often differ from patient to patient. The factors that determine whether or not a patient will respond to treatment have not been elucidated. Here, the authors evaluated sex differences in pain relief after DBS for PD. METHODS The authors prospectively evaluated 20 patients preoperatively and postoperatively after bilateral STN DBS with the validated numeric rating scale (NRS), Revised Oswestry Disability Index for low-back pain (RODI), and King's Parkinson's Disease Pain Scale (KPDPS) and assessed the impact of sex as a biological variable. RESULTS The cohort consisted of 6 female and 14 male patients with a mean duration of 11.8 ± 2.0 months since DBS surgery. Females were significantly older (p = 0.02). Covariate analysis, however, showed no effect of age, stimulation settings, or other confounding variables. KPDPS total scores statistically significantly improved only among males (p < 0.001). Males improved more than females in musculoskeletal and chronic subsets of the KPDPS (p = 0.03 and p = 0.01, respectively). RODI scores significantly improved in males but not in females (p = 0.03 and p = 0.30, respectively). Regarding the NRS score, the improvements seen in both sexes in NRS were not significant. CONCLUSIONS Although it is well recognized that pain complaints in PD are different between men and women, this study is unique in that it examines the sex-specific DBS effects on this symptom. Considering sex as a biological variable may have important implications for DBS pain outcome studies moving forward.
Collapse
Affiliation(s)
- Olga Khazen
- Departments of1Neuroscience and Experimental Therapeutics
| | | | | | | | - Maria Hancu
- Departments of1Neuroscience and Experimental Therapeutics
| | - Miriam M Shao
- Departments of1Neuroscience and Experimental Therapeutics
| | | | - Lucy Maguire
- Departments of1Neuroscience and Experimental Therapeutics
- 2Neurosurgery, and
| | | | | | - Era K Hanspal
- 3Neurology, Albany Medical College, Albany, New York
| | - Octavian Adam
- 3Neurology, Albany Medical College, Albany, New York
| | - Eric Molho
- 3Neurology, Albany Medical College, Albany, New York
| | - Julie G Pilitsis
- Departments of1Neuroscience and Experimental Therapeutics
- 2Neurosurgery, and
| |
Collapse
|
17
|
Jost ST, Visser-Vandewalle V, Rizos A, Loehrer PA, Silverdale M, Evans J, Samuel M, Petry-Schmelzer JN, Sauerbier A, Gronostay A, Barbe MT, Fink GR, Ashkan K, Antonini A, Martinez-Martin P, Chaudhuri KR, Timmermann L, Dafsari HS. Non-motor predictors of 36-month quality of life after subthalamic stimulation in Parkinson disease. NPJ PARKINSONS DISEASE 2021; 7:48. [PMID: 34103534 PMCID: PMC8187358 DOI: 10.1038/s41531-021-00174-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
To identify predictors of 36-month follow-up quality of life (QoL) outcome after bilateral subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson’s disease (PD). In this ongoing, prospective, multicenter international study (Cologne, Manchester, London) including 73 patients undergoing STN-DBS, we assessed the following scales preoperatively and at 6-month and 36-month follow-up: PD Questionnaire-8 (PDQ-8), NMSScale (NMSS), Scales for Outcomes in PD (SCOPA)-motor examination, -activities of daily living, and -complications, and levodopa equivalent daily dose (LEDD). We analyzed factors associated with QoL improvement at 36-month follow-up based on (1) correlations between baseline test scores and QoL improvement, (2) step-wise linear regressions with baseline test scores as independent and QoL improvement as dependent variables, (3) logistic regressions and receiver operating characteristic curves using a dichotomized variable “QoL responders”/“non-responders”. At both follow-ups, NMSS total score, SCOPA-motor examination, and -complications improved and LEDD was reduced significantly. PDQ-8 improved at 6-month follow-up with subsequent decrements in gains at 36-month follow-up when 61.6% of patients were categorized as “QoL non-responders”. Correlations, linear, and logistic regression analyses found greater PDQ-8 improvements in patients with younger age, worse PDQ-8, and worse specific NMS at baseline, such as ‘difficulties experiencing pleasure’ and ‘problems sustaining concentration’. Baseline SCOPA scores were not associated with PDQ-8 changes. Our results provide evidence that 36-month QoL changes depend on baseline neuropsychological and neuropsychiatric non-motor symptoms burden. These findings highlight the need for an assessment of a wide range of non-motor and motor symptoms when advising and selecting individuals for DBS therapy.
Collapse
Affiliation(s)
- Stefanie T Jost
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.
| | - Veerle Visser-Vandewalle
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne, Germany
| | - Alexandra Rizos
- Parkinson Foundation International Centre of Excellence, King's College Hospital, London, UK
| | - Philipp A Loehrer
- Department of Neurology, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Monty Silverdale
- Department of Neurology and Neurosurgery, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Greater Manchester, UK
| | - Julian Evans
- Department of Neurology and Neurosurgery, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Greater Manchester, UK
| | - Michael Samuel
- Parkinson Foundation International Centre of Excellence, King's College Hospital, London, UK
| | - Jan Niklas Petry-Schmelzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Anna Sauerbier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexandra Gronostay
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Michael T Barbe
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Gereon R Fink
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Keyoumars Ashkan
- Parkinson Foundation International Centre of Excellence, King's College Hospital, London, UK
| | - Angelo Antonini
- Department of Neurosciences (DNS), Padova University, Padova, Italy
| | - Pablo Martinez-Martin
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, Madrid, Spain
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence, King's College Hospital, London, UK.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lars Timmermann
- Department of Neurology, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Haidar S Dafsari
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.
| | | |
Collapse
|
18
|
Venkatesan D, Iyer M, S RW, G L, Vellingiri B. The association between multiple risk factors, clinical correlations and molecular insights in Parkinson's disease patients from Tamil Nadu population, India. Neurosci Lett 2021; 755:135903. [PMID: 33894333 DOI: 10.1016/j.neulet.2021.135903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with multifactorial aetiology that influences the quality of life. However, the association of possible factors with PD is need to be investigated in Indian population, hence we aimed to determine the association of lifestyle, environmental factors, biochemical parameters and genetic insights of MT-ND1 gene in PD patients. Using a standardised questionnaire, PD patients and control group of about 146 subjects were interviewed on demographic, lifestyle and environmental factors. The subjects includes n = 73 Parkinson's patients [juvenile (n = 4); early-onset (n = 8); late-onset (n = 61)] with equal number of age and sex matched controls, further we had obtained institutional ethical clearance and informed consent from study participants. Biomarker investigations and MT-ND1 alterations were investigated by appropriate molecular techniques. During the average follow-up years of 5.1, significant association was observed among smoking, alcohol, caffeinated drinks, surgery, pesticide exposure at p < 0.05 in varied PD age groups. Occupational exposure to agriculture and industry showed an increased risk among the late-onset group. The biomarkers uric acid (UA) and dopamine (DA) were significant at p < 0.05 in all the three PD age groups. The MT-ND1 alteration with A3843 G variant was significant at p < 0.05 for AG allele in all the three PD groups but the highest prevalence was observed in late-onset group. From our study, smoking, alcohol, caffeinated drinks, occupational influence of agriculture and industry and pesticide exposure had more association with PD occurrence. Hence, to the best of our knowledge, this is the first kind of study in Tamil Nadu population, India to validate the various factors with PD. Therefore we suggest that further research is mandatory to detect other possible associations among PD, using comprehensive larger sample size.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Robert Wilson S
- Department of Neurology and Neurosurgery, SRM University, Kattankulathur, 603 203, Kancheepuram District, Tamil Nadu, India
| | - Lakshmipathy G
- Anbu Hospital, Mayiladuthurai, 609001, Tamil Nadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
19
|
Nehra A, Sharma P, Narain A, Sharma S, Joshi G, Bhat P, Singh RK, Rajan R, Goyal V, Srivastava AK. Enhancing Quality of Life in Indian Parkinson's Disease Patients with Improved Measurement of Psychological Domains: A Perspective. Ann Indian Acad Neurol 2021; 24:132-137. [PMID: 34220053 PMCID: PMC8232502 DOI: 10.4103/aian.aian_410_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 12/03/2022] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neuro-degenerative disorder. Research in PD is gradually increasing in India due to increased clinical cases, which could double by 2030 worldwide. Although its prevalence is low in India as compared to other countries, the total burden is much higher due to the large population size. PD is progressively debilitating, with pronounced motor and nonmotor symptoms (NMSs) that severely affect the quality of life (QoL) of patients and their caregivers. The progressive nature of the disease lays great emphasis on doctors to focus on the patients' QoL. As a consequence, Health-related QoL (HRQoL) has gradually become one of the main indicators for assessing health-related outcome. There is a growing need to pay attention to the NMSs and a pressing need to look at the QoL of Indian patients with PD through a culture and value specific lens. Research into the holistic QoL assessment with emphasis on psychological domains may allow for the early evaluation and intervention of depressive and cognitive symptoms in PD. This could result into increased productivity, reduced morbidity, and healthcare cost, which would in turn result into better QoL of Indian PD patients.
Collapse
Affiliation(s)
- Ashima Nehra
- Neuropsychology, Neurosciences Centre, AIIMS, New Delhi, India
| | - Priya Sharma
- Neuropsychology, Neurosciences Centre, AIIMS, New Delhi, India
| | - Avneesh Narain
- Neuropsychology, Neurosciences Centre, AIIMS, New Delhi, India
| | - Shivani Sharma
- Neuropsychology, Neurosciences Centre, AIIMS, New Delhi, India
| | - Garima Joshi
- Neuropsychology, Neurosciences Centre, AIIMS, New Delhi, India
| | | | | | - Roopa Rajan
- Department of Neurology, AIIMS, New Delhi, India
| | - Vinay Goyal
- Department of Neurology, Medanta, Gurgaon, Haryana, India
| | | |
Collapse
|
20
|
Crispino P, Gino M, Barbagelata E, Ciarambino T, Politi C, Ambrosino I, Ragusa R, Marranzano M, Biondi A, Vacante M. Gender Differences and Quality of Life in Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E198. [PMID: 33383855 PMCID: PMC7795924 DOI: 10.3390/ijerph18010198] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022]
Abstract
Parkinson's disease has been found to significantly affect health-related quality of life. The gender differences of the health-related quality of life of subjects with Parkinson's disease have been observed in a number of studies. These differences have been reported in terms of the age at onset, clinical manifestations, and response to therapy. In general, women with Parkinson's disease showed more positive disease outcomes with regard to emotion processing, non-motor symptoms, and cognitive functions, although women report more Parkinson's disease-related clinical manifestations. Female gender predicted poor physical functioning and socioemotional health-related quality of life, while male gender predicted the cognitive domain of health-related quality of life. Some studies reported gender differences in the association between health-related quality of life and non-motor symptoms. Depression and fatigue were the main causes of poorer health-related quality of life in women, even in the early stages of Parkinson's disease. The aim of this review was to collect the best available evidence on gender differences in the development of Parkinson's disease symptoms and health-related quality of life.
Collapse
Affiliation(s)
- Pietro Crispino
- Internal Medicine Department, Lagonegro Hospital, 85042 Lagonegro (PZ), Italy;
| | - Miriam Gino
- Department of Internal Medicine, Rivoli Hospital, 10098 Rivoli (TO), Italy;
| | - Elena Barbagelata
- Department of Internal Medicine, ASL 4 Chiavarese, Sestri Levante Hospital, 16039 Sestri Levante (GE), Italy;
| | - Tiziana Ciarambino
- Department of Medical, Surgical, Neurological, Metabolic and Geriatrics Sciences, Marcianise Hospital, ASL Caserta, University of Campania “L. Vanvitelli”, 81025 Naples, Italy;
| | - Cecilia Politi
- Department of Internal Medicine, Veneziale Hospital, 86170 Isernia, Italy;
| | | | - Rosalia Ragusa
- Health Technology Assessment Committee, University Hospital G. Rodolico, 95123 Catania, Italy;
| | - Marina Marranzano
- Department of Medical, Surgical and Advanced Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy;
| | - Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
21
|
Sex Differences in Neuromodulation Treatment Approaches for Traumatic Brain Injury: A Scoping Review. J Head Trauma Rehabil 2020; 35:412-429. [PMID: 33165154 DOI: 10.1097/htr.0000000000000631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Neuromodulatory brain stimulation interventions for traumatic brain injury (TBI)-related health sequelae, such as psychiatric, cognitive, and pain disorders, are on the rise. Because of disproportionate recruitment and epidemiological reporting of TBI-related research in men, there is limited understanding of TBI development, pathophysiology, and treatment intervention outcomes in women. With data suggesting sex-related variances in treatment outcomes, it is important that these gaps are addressed in emerging, neuromodulatory treatment approaches for TBI populations. METHODS Four research databases (PubMED, EMBASE, CINAHL, and PsycINFO) were electronically searched in February 2020. DESIGN This PRISMA Scoping Review (PRISMA-ScR)-guided report contextualizes the importance of reporting sex differences in TBI + neuromodulatory intervention studies and summarizes the current state of reporting sex differences when investigating 3 emerging interventions for TBI outcomes. RESULTS Fifty-four studies were identified for the final review including 12 controlled trials, 16 single or case series reports, and 26 empirical studies. Across all studies reviewed, 68% of participants were male, and only 7 studies reported sex differences as a part of their methodological approach, analysis, or discussion. CONCLUSION This review is hoped to update the TBI community on the current state of evidence in reporting sex differences across these 3 neuromodulatory treatments of post-TBI sequelae. The proposed recommendations aim to improve future research and clinical treatment of all individuals suffering from post-TBI sequelae.
Collapse
|
22
|
Gamache J, Yun Y, Chiba-Falek O. Sex-dependent effect of APOE on Alzheimer's disease and other age-related neurodegenerative disorders. Dis Model Mech 2020; 13:dmm045211. [PMID: 32859588 PMCID: PMC7473656 DOI: 10.1242/dmm.045211] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The importance of apolipoprotein E (APOE) in late-onset Alzheimer's disease (LOAD) has been firmly established, but the mechanisms through which it exerts its pathogenic effects remain elusive. In addition, the sex-dependent effects of APOE on LOAD risk and endophenotypes have yet to be explained. In this Review, we revisit the different aspects of APOE involvement in neurodegeneration and neurological diseases, with particular attention to sex differences in the contribution of APOE to LOAD susceptibility. We discuss the role of APOE in a broader range of age-related neurodegenerative diseases, and summarize the biological factors linking APOE to sex hormones, drawing on supportive findings from rodent models to identify major mechanistic themes underlying the exacerbation of LOAD-associated neurodegeneration and pathology in the female brain. Additionally, we list sex-by-genotype interactions identified across neurodegenerative diseases, proposing APOE variants as a shared etiology for sex differences in the manifestation of these diseases. Finally, we present recent advancements in 'omics' technologies, which provide a new platform for more in-depth investigations of how dysregulation of this gene affects the development and progression of neurodegenerative diseases. Collectively, the evidence summarized in this Review highlights the interplay between APOE and sex as a key factor in the etiology of LOAD and other age-related neurodegenerative diseases. We emphasize the importance of careful examination of sex as a contributing factor in studying the underpinning genetics of neurodegenerative diseases in general, but particularly for LOAD.
Collapse
Affiliation(s)
- Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Young Yun
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
23
|
Geraedts VJ, Feleus S, Marinus J, Hilten JJ, Contarino MF. What predicts quality of life after subthalamic deep brain stimulation in Parkinson’s disease? A systematic review. Eur J Neurol 2020; 27:419-428. [DOI: 10.1111/ene.14147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Affiliation(s)
- V. J. Geraedts
- Department of Neurology Leiden University Medical Center Leiden The Netherlands
| | - S. Feleus
- Department of Neurology Leiden University Medical Center Leiden The Netherlands
| | - J. Marinus
- Department of Neurology Leiden University Medical Center Leiden The Netherlands
| | - J. J. Hilten
- Department of Neurology Leiden University Medical Center Leiden The Netherlands
| | - M. F. Contarino
- Department of Neurology Leiden University Medical Center Leiden The Netherlands
- Department of Neurology Haga Teaching Hospital The Hague The Netherlands
| |
Collapse
|
24
|
|
25
|
Mulak A. An overview of the neuroendocrine system in Parkinson's disease: what is the impact on diagnosis and treatment? Expert Rev Neurother 2019; 20:127-135. [PMID: 31829756 DOI: 10.1080/14737175.2020.1701437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: A growing body of evidence indicates that neuroendocrine interactions may occur at all levels of the brain-gut-microbiota axis, which is directly involved in the pathogenesis of Parkinson's disease (PD).Areas covered: The review presents some current and emerging concepts regarding the organization and functioning of the neuroendocrine system as well as the role of neuroendocrine disturbances in the pathophysiology and symptomatology of PD. The concept of the brain-gut-microbiota triad interactions in the neuroendocrine system and PD is proposed. In PD, dysregulation of the main neuroendocrine axes coordinated by the hypothalamus is accompanied by disruptions at the peripheral level, which involve enteroendocrine cells producing numerous neuropeptides. Moreover, the important role of the gut microbiota as a main coordinator of immune and neuroendocrine interactions is discussed. The potential diagnostic and therapeutic implications in the context of the recent developments in the fields of neuroendocrinology and neurodegeneration are also presented.Expert opinion: Unraveling complex neuroendocrine interactions in the course of PD may provide crucial diagnostic implications and novel therapeutic approaches including the application of gut neuropeptides and gut microbiota modification.
Collapse
Affiliation(s)
- Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
26
|
Kim R, Yoo D, Choi JH, Shin JH, Park S, Kim HJ, Paek SH, Jeon B. Sex differences in the short-term and long-term effects of subthalamic nucleus stimulation in Parkinson's disease. Parkinsonism Relat Disord 2019; 68:73-78. [DOI: 10.1016/j.parkreldis.2019.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
|
27
|
Fana M, Everett G, Fagan T, Mazzella M, Zahedi S, Clements JM. Procedural outcomes of deep brain stimulation (DBS) surgery in rural and urban patient population settings. J Clin Neurosci 2019; 72:310-315. [PMID: 31492482 DOI: 10.1016/j.jocn.2019.08.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
Abstract
Presently, disparities exist between race, sex, socioeconomic status, hospitals, income, comorbidities, and insurance profiles of patients undergoing DBS surgery. Here, we aim to highlight several variables and their predictive powers of DBS surgery outcomes as measured by dischargelocation, length of hospital stays, and total hospital charges. A retrospective cohort study using discharge data from NIS and HCUP for analyses and regression model statistics is performed. Comparative analyses demonstrate urban patients were more often non-routinely discharged, possessed private insurance, and accrued greater hospital costs compared to rural patients. Moreover, regression analyses predicts urban patients have 70% lower odds of routine discharge while those with a major loss of function prior to surgery also have 81% lower odds of routine discharge compared to those with minor loss of function. Ultimately, our study found urban patients or patients with major illnesses have higher hospital charges, longer hospitalization, and more often non-routinely discharged.
Collapse
Affiliation(s)
- Michael Fana
- Central Michigan University College of Medicine, Mount Pleasant, MI, USA.
| | - Gregory Everett
- Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Thomas Fagan
- Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Megan Mazzella
- Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Sulmaz Zahedi
- Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - John M Clements
- Michigan State University, Division of Public Health, College of Human Medicine, Flint, MI, USA
| |
Collapse
|
28
|
Shpiner DS, Di Luca DG, Cajigas I, Diaz JS, Margolesky J, Moore H, Levin BE, Singer C, Jagid J, Luca CC. Gender Disparities in Deep Brain Stimulation for Parkinson's Disease. Neuromodulation 2019; 22:484-488. [DOI: 10.1111/ner.12973] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Danielle S. Shpiner
- University of Miami Miller School of Medicine Department of Neurology Miami FL USA
| | - Daniel G. Di Luca
- University of Miami Miller School of Medicine Department of Neurology Miami FL USA
| | - Iahn Cajigas
- University of Miami Miller School of Medicine Department of Neurosurgery Miami FL USA
| | - Juan S. Diaz
- University of Miami Miller School of Medicine Department of Neurology Miami FL USA
| | - Jason Margolesky
- University of Miami Miller School of Medicine Department of Neurology Miami FL USA
| | - Henry Moore
- University of Miami Miller School of Medicine Department of Neurology Miami FL USA
| | - Bonnie E. Levin
- University of Miami Miller School of Medicine Department of Neurology Miami FL USA
| | - Carlos Singer
- University of Miami Miller School of Medicine Department of Neurology Miami FL USA
| | - Jonathan Jagid
- University of Miami Miller School of Medicine Department of Neurosurgery Miami FL USA
| | - Corneliu C. Luca
- University of Miami Miller School of Medicine Department of Neurology Miami FL USA
| |
Collapse
|
29
|
Jurado-Coronel JC, Cabezas R, Ávila Rodríguez MF, Echeverria V, García-Segura LM, Barreto GE. Sex differences in Parkinson's disease: Features on clinical symptoms, treatment outcome, sexual hormones and genetics. Front Neuroendocrinol 2018; 50:18-30. [PMID: 28974386 DOI: 10.1016/j.yfrne.2017.09.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/12/2017] [Accepted: 09/29/2017] [Indexed: 01/14/2023]
Abstract
Parkinson's disease (PD) is the second most frequent age-related neurodegenerative disorder. Sex is an important factor in the development of PD, as reflected by the fact that it is more common in men than in women by an approximate ratio of 2:1. Our hypothesis is that differences in PD among men and women are highly determined by sex-dependent differences in the nigrostriatal dopaminergic system, which arise from environmental, hormonal and genetic influences. Sex hormones, specifically estrogens, influence PD pathogenesis and might play an important role in PD differences between men and women. The objective of this review was to discuss the PD physiopathology and point out sex differences in nigrostriatal degeneration, symptoms, genetics, responsiveness to treatments and biochemical and molecular mechanisms among patients suffering from this disease. Finally, we discuss the role estrogens may have on PD sex differences.
Collapse
Affiliation(s)
- Juan Camilo Jurado-Coronel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Ricardo Cabezas
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | - Valentina Echeverria
- Universidad San Sebastián, Fac. Cs de la Salud, Lientur 1457, Concepción, 4080871, Chile; Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | - Luis Miguel García-Segura
- Instituto Cajal, CSIC, Madrid, Spain; CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
30
|
Abstract
Deep brain stimulation (DBS) is effective for Parkinson's disease (PD), dystonia, and essential tremor (ET). While motor benefits are well documented, cognitive and psychiatric side effects from the subthalamic nucleus (STN) and globus pallidus interna (GPi) DBS for PD are increasingly recognized. Underlying disease, medications, microlesions, and post-surgical stimulation likely all contribute to non-motor symptoms (NMS).
Collapse
|
31
|
Picillo M, Nicoletti A, Fetoni V, Garavaglia B, Barone P, Pellecchia MT. The relevance of gender in Parkinson’s disease: a review. J Neurol 2017; 264:1583-1607. [DOI: 10.1007/s00415-016-8384-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|