1
|
Ahmed WI, Mohammed AN, Sleim ASA. Efficacy evaluation of hydrogen peroxide disinfectant based zinc oxide nanoparticles against diarrhea causing Escherichia coli in ruminant animals and broiler chickens. Sci Rep 2024; 14:9159. [PMID: 38644372 PMCID: PMC11033286 DOI: 10.1038/s41598-024-59280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Different strains of Escherichia coli that exhibit genetic characteristics linked to diarrhea pose a major threat to both human and animal health. The purpose of this study was to determine the prevalence of pathogenic Escherichia coli (E. coli), the genetic linkages and routes of transmission between E. coli isolates from different animal species. The efficiency of disinfectants such as hydrogen peroxide (H2O2), Virkon®S, TH4+, nano zinc oxide (ZnO NPs), and H2O2-based zinc oxide nanoparticles (H2O2/ZnO NPs) against isolated strains of E. coli was evaluated. Using 100 fecal samples from different diarrheal species (cow n = 30, sheep n = 40, and broiler chicken n = 30) for E. coli isolation and identification using the entero-bacterial repetitive intergenic consensus (ERIC-PCR) fingerprinting technique. The E. coli properties isolated from several diarrheal species were examined for their pathogenicity in vitro. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared spectrum (FT-IR), X-ray diffraction (XRD), zeta potential, and particle size distribution were used for the synthesis and characterization of ZnO NPs and H2O2/ZnO NPs. The broth macro-dilution method was used to assess the effectiveness of disinfectants and disinfectant-based nanoparticles against E. coli strains. Regarding the results, the hemolytic activity and Congo red binding assays of pathogenic E. coli isolates were 55.3 and 44.7%, respectively. Eleven virulent E. coli isolates were typed into five ERIC-types (A1, A2, B1, B2, and B3) using the ERIC-PCR method. These types clustered into two main clusters (A and B) with 75% similarity. In conclusion, there was 90% similarity between the sheep samples' ERIC types A1 and A2. On the other hand, 89% of the ERIC types B1, B2, and B3 of cows and poultry samples were comparable. The H2O2/ZnO NPs composite exhibits potential antibacterial action against E. coli isolates at 0.04 mg/ml after 120 min of exposure.
Collapse
Affiliation(s)
- Walaa I Ahmed
- Bacteriology Lab., Alexandria Provincial Lab., Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Asmaa N Mohammed
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Al-Shimaa A Sleim
- Bacteriology Lab., Alexandria Provincial Lab., Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| |
Collapse
|
2
|
Ahmed H, Joshi LT. Clostridioides difficile spores tolerate disinfection with sodium hypochlorite disinfectant and remain viable within surgical scrubs and gown fabrics. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001418. [PMID: 37988292 PMCID: PMC10710845 DOI: 10.1099/mic.0.001418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Clostridioides difficile is the most common cause of antibiotic-associated diarrhoea globally. Its spores have been implicated in the prevalence of C. difficile infection due to their resistance and transmission ability between surfaces. Currently, disinfectants such as chlorine-releasing agents (CRAs) and hydrogen peroxide are used to decontaminate and reduce the incidence of infections in clinical environments. Our previous research demonstrated the ability of C. difficile spores to survive exposure to recommended concentrations of sodium dichloroisocyanurate in liquid form and within personal protective fabrics such as surgical gowns; however, the present study examined the spore response to clinical in-use concentrations of sodium hypochlorite. Spores were exposed to a 10 min contact time of 1000, 5000 and 10 000 p.p.m. sodium hypochlorite, and spore recovery was determined. To understand whether biocide-exposed spores transmitted across clinical surfaces in vitro , biocide-exposed spores were spiked onto surgical scrubs and patient gowns and recovery was determined by a plate transfer assay. Scanning electron microscopy was used to establish if there were any morphological changes to the outer spore coat. The results revealed that viable biocide-exposed C. difficile spores can be recovered from surgical scrubs and patient gowns, with no observable changes to spore morphology, highlighting the potential of these fabrics as vectors of spore transmission. This study demonstrates that alternative strategies should be urgently sought to disinfect C. difficile spores to break the chain of transmission in clinical environments.
Collapse
Affiliation(s)
- Humaira Ahmed
- Peninsula Medical School, Faculty of Health, University of Plymouth, Devon, PL4 8AA, UK
| | - Lovleen Tina Joshi
- Peninsula Dental School, Faculty of Health, University of Plymouth, Devon, PL4 8AA, UK
| |
Collapse
|
3
|
Inamdar I. Recycling of plastic wastes generated from COVID-19: A comprehensive illustration of type and properties of plastics with remedial options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155895. [PMID: 35568167 PMCID: PMC9095076 DOI: 10.1016/j.scitotenv.2022.155895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 05/21/2023]
Abstract
Plastic has contributed enormously to the healthcare sector and towards public health safety during the COVID-19 pandemic. With the frequent usage of plastic-based personal protective equipment (PPEs) (including face masks, gloves, protective body suits, aprons, gowns, face shields, surgical masks, and goggles), by frontline health workers, there has been a tremendous increase in their manufacture and distribution. Different types of plastic polymers are used in the manufacture of this equipment, depending upon their usage. However, since a majority of these plastics are still single-use plastics (SUP), they are not at all eco-friendly and end up generating large quantities of plastic waste. The overview presents the various available and practiced methods in vogue for disposal cum treatment of these highly contaminated plastic wastes. Among the current methods of plastic waste disposal, incineration and land filling are the most common ones, but both these methods have their negative impacts on the environment. Alongside, numerous methods that can be used to sterilize them before any treatment have been discussed. There are several new sorting technologies, to help produce purer polymers that can be made to undergo thermal or chemical treatments. Microbial degradation is one such novel method that is under the spotlight currently and being studied extensively, because of its ecological advantages, cost-effectiveness, ease of use, and maintenance. In addition to the deliberations on the methods, strategies have been enumerated for combination of different methods, vis-à-vis studying the life cycle assessment towards a more circular economy in handling this menace to protect mankind.
Collapse
|
4
|
Understanding short-term transmission dynamics of methicillin-resistant Staphylococcus aureus in the patient room. Infect Control Hosp Epidemiol 2022; 43:1147-1154. [PMID: 34448445 PMCID: PMC9272746 DOI: 10.1017/ice.2021.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Little is known about the short-term dynamics of methicillin-resistant Staphylococcus aureus (MRSA) transmission between patients and their immediate environment. We conducted a real-life microbiological evaluation of environmental MRSA contamination in hospital rooms in relation to recent patient activity. DESIGN Observational pilot study. SETTING Two hospitals, hospital 1 in Zurich, Switzerland, and hospital 2 in Ann Arbor, Michigan, United States. PATIENTS Inpatients with MRSA colonization or infection. METHODS At baseline, the groin, axilla, nares, dominant hands of 10 patients and 6 environmental high-touch surfaces in their rooms were sampled. Cultures were then taken of the patient hand and high-touch surfaces 3 more times at 90-minute intervals. After each swabbing, patients' hands and surfaces were disinfected. Patient activity was assessed by interviews at hospital 1 and analysis of video footage at hospital 2. A contamination pressure score was created by multiplying the number of colonized body sites with the activity level of the patient. RESULTS In total, 10 patients colonized and/or infected with MRSA were enrolled; 40 hand samples and 240 environmental samples were collected. At baseline, 30% of hands and 20% of high-touch surfaces yielded MRSA. At follow-up intervals, 8 (27%) of 30 patient hands, and 10 (6%) of 180 of environmental sites were positive. Activity of the patient explained 7 of 10 environmental contaminations. Patients with higher contamination pressure score showed a trend toward higher environmental contamination. CONCLUSION Environmental MRSA contamination in patient rooms was highly dynamic and was likely driven by the patient's MRSA body colonization pattern and the patient activity.
Collapse
|
5
|
Abdel-Latef GK, Mohammed AN. Efficiency evaluation of some novel disinfectants and anti-bacterial nanocomposite on zoonotic bacterial pathogens in commercial Mallard duck pens for efficient control. J Adv Vet Anim Res 2021; 8:105-115. [PMID: 33860020 PMCID: PMC8043352 DOI: 10.5455/javar.2021.h492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/28/2020] [Accepted: 10/17/2020] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE This work aimed to detect the frequency of pathogenic bacteria of zoonotic importance in ducks' dropping, their surrounding environment, and farmworkers in contact with them. Furthermore, the susceptibility pattern of isolated bacteria to antimicrobial drugs and the efficiency of disinfectants (CID 20, Durak® plus, and hydrogen peroxide (H2O2), nano zinc oxide (ZnO NPs), and hydrogen peroxide loaded nano zinc oxide (H2O2/ZnO NPs) composites against isolated bacteria were evaluated. MATERIALS AND METHODS A total of 271 samples were collected from duck pens, including 35 fecal droppings, 200 environmental samples, and 36 from the hands of pen workers for isolation and identification of bacterial strains using standard microbiological procedures. After that, the antibiotic sensitivity testing of 40 bacterial isolates was carried out using disk diffusion assay. ZnO NPs and H2O2/ZnO NPs were characterized using Fourier-transform infrared spectrum and high-resolution transmission electron microscopy. The efficacy of disinfectants and nanocomposites was evaluated against enteropathogenic bacteria using the broth macro-dilution method. RESULTS The results showed that the overall prevalence of pathogenic bacteria in duck pens was 62.73. The highest isolation rate was detected in duck fecal droppings (100%), while Escherichia coli was found to be the most isolated pathogen (56.47%), followed by Pseudomonas aeruginosa (21.8%), Proteus mirabilis (15.29), and Salmonella species (6.47%). Multidrug resistance (MDR) was detected in the majority of bacterial isolates. The efficiency of CID 20 and Durak® plus disinfectants against all bacterial isolates was highly susceptible (100%) after 120 min of exposure time compared to the effectiveness of H2O2 on enteropathogenic bacteria which did not exceeded 60% at 5% concentration. Meanwhile, the sensitivity of Salmonella spp. to Durak® plus did not exceeded 80%. CONCLUSION The duck fecal droppings are the primary source of bacterial isolates. MDR isolates were susceptible to both CID 20 and Durak® plus disinfectants after 120 min of exposure time at a concentration of 1:100 ml. Besides, H2O2/ZnO NPs composite proved its lethal effect against all testing strains at 0.02 mg/ml after 120 min of exposure. Strict biosecurity guidelines are required to mitigate and prevent the transmission of potentially zoonotic pathogens through the farm environment and/or duck droppings.
Collapse
Affiliation(s)
- Gihan K. Abdel-Latef
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Asmaa N. Mohammed
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
6
|
Napagoda M, Gerstmeier J, Butschek H, De Soyza S, Pace S, Lorenz S, Qader M, Witharana S, Nagahawatte A, Wijayaratne G, Svatoš A, Jayasinghe L, Koeberle A, Werz O. The Anti-Inflammatory and Antimicrobial Potential of Selected Ethnomedicinal Plants from Sri Lanka. Molecules 2020; 25:molecules25081894. [PMID: 32326068 PMCID: PMC7221831 DOI: 10.3390/molecules25081894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/01/2023] Open
Abstract
Traditional folk medicine in Sri Lanka is mostly based on plants and plant-derived products, however, many of these medicinal plant species are scientifically unexplored. Here, we evaluated the anti-inflammatory and antimicrobial potency of 28 different extracts prepared from seven popular medicinal plant species employed in Sri Lanka. The extracts were subjected to cell-based and cell-free assays of 5-lipoxygenase (5-LO), microsomal prostaglandin E2 synthase (mPGES)-1, and nitric oxide (NO) scavenging activity. Moreover, antibacterial and disinfectant activities were assessed. Characterization of secondary metabolites was achieved by gas chromatography coupled to mass spectrometric (GC-MS) analysis. n-Hexane- and dichloromethane-based extracts of Garcinia cambogia efficiently suppressed 5-LO activity in human neutrophils (IC50 = 0.92 and 1.39 µg/mL), and potently inhibited isolated human 5-LO (IC50 = 0.15 and 0.16 µg/mL) and mPGES-1 (IC50 = 0.29 and 0.49 µg/mL). Lipophilic extracts of Pothos scandens displayed potent inhibition of mPGES-1 only. A methanolic extract of Ophiorrhiza mungos caused significant NO scavenging activity. The lipophilic extracts of G. cambogia exhibited prominent antibacterial and disinfectant activities, and GC-MS analysis revealed the presence of fatty acids, sesquiterpenes and other types of secondary metabolites. Together, our results suggest the prospective utilization of G.cambogia as disinfective agent with potent anti-inflammatory properties.
Collapse
Affiliation(s)
- Mayuri Napagoda
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka;
- Correspondence: (M.N.); (O.W.); Tel.: +94-(0)71 9216281 (M.N.); +49-(0)3641-949801 (O.W.)
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany; (J.G.); (H.B.); (S.P.); (A.K.)
| | - Hannah Butschek
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany; (J.G.); (H.B.); (S.P.); (A.K.)
| | - Sudhara De Soyza
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka;
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany; (J.G.); (H.B.); (S.P.); (A.K.)
| | - Sybille Lorenz
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (S.L.); (A.S.)
| | - Mallique Qader
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka; (M.Q.); (L.J.)
| | - Sanjeeva Witharana
- Faculty of Engineering, Higher Colleges of Technology, PO Box 4793 Abu Dhabi, UAE;
| | - Ajith Nagahawatte
- Department of Microbiology, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka; (A.N.); (G.W.)
| | - Gaya Wijayaratne
- Department of Microbiology, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka; (A.N.); (G.W.)
| | - Aleš Svatoš
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (S.L.); (A.S.)
| | - Lalith Jayasinghe
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka; (M.Q.); (L.J.)
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany; (J.G.); (H.B.); (S.P.); (A.K.)
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany; (J.G.); (H.B.); (S.P.); (A.K.)
- Correspondence: (M.N.); (O.W.); Tel.: +94-(0)71 9216281 (M.N.); +49-(0)3641-949801 (O.W.)
| |
Collapse
|
7
|
Agafonova MN, Kazakova RR, Lubina AP, Zeldi MI, Nikitina EV, Balakin KV, Shtyrlin YG. Antibacterial activity profile of miramistin in in vitro and in vivo models. Microb Pathog 2020; 142:104072. [PMID: 32068161 DOI: 10.1016/j.micpath.2020.104072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Miramistin is a widely used antiseptic, disinfectant and preservative, and one of the most popular antimicrobial agents on pharmaceutical market of the Russian Federation (http://www.dsm.ru/en/news/385/). However, there is a lack of reported systematic data on antibacterial efficacy of this agent obtained in accordance with the international standards. AIM This paper represents a systematic study of antibacterial properties of miramistin. Another objective of this work is to evaluate and compare the exploratory performance of in vitro and in vivo protocols of antiseptics' efficacy testing using miramistin as the reference antiseptic. METHODS Antibacterial activity of 0.1% and 0.2% aqueous solutions of miramistin against two museum strains of S. aureus (ATCC 209p) and E. coli (CDC F-50) was studied. Three standard in vitro laboratory tests (microdilution test, suspension test, and metal surface test), and one in vivo test (on rat's skin) were used. The study was conducted in accordance with the international regulatory documents. RESULTS Miramistin showed high bactericidal activity against the studied bacterial pathogens in the standard in vitro tests. Thus, in the microdilution test it showed expressed activity against S. aureus (MIC 8 μg/ml, MBC 16 μg/ml) and E. coli (MIC 32 μg/ml, MBC 128 μg/ml). In the suspension test, miramistin decreased the amount of colony forming units by at least 6 log10 units for S. aureus, and by at least 4.5 log10 units for E. coli. Transition to the metal surface test led to significant decrease of antibacterial activity by 1-3 log10 units as compared to the suspension test. Further dramatic reduction of antiseptic activity (by 3-4 log10 units) was observed in in vivo rat skin test. Addition of a protein contaminant (bovine serum albumin) led to a general decrease in the effectiveness of miramistin against the test pathogens (typically, by 1-2 log10 units). An interesting effect of exposure time-dependent reversal of miramistin's specificity to the studied Gram-positive S. aureus and the Gram-negative E. coli organisms was observed in the metal surface test. CONCLUSIONS The results of this work provide systematic data on antibacterial efficacy of miramistin. They also underscore the need in relevant in vivo models for evaluation of antiseptics' efficacy. While the existing in vitro methods can be successfully applied at the discovery stages, it is necessary to use more realistic in vivo models at more advanced development stages. The observed selectivity reversal effect should be taken into account when carrying out the antiseptics' efficacy testing and surface disinfection procedures.
Collapse
Affiliation(s)
- Mariya N Agafonova
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Russia
| | - Renata R Kazakova
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Russia
| | - Anna P Lubina
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Russia
| | - Marina I Zeldi
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Russia
| | - Elena V Nikitina
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Russia
| | - Konstantin V Balakin
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Yurii G Shtyrlin
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, Russia.
| |
Collapse
|
8
|
Santhakumar K, Viswanath V. Novel Methods for Efficacy Testing of Disinfectants – Part II. TENSIDE SURFACT DET 2019. [DOI: 10.3139/113.110606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractThe control of infections and maintenance of hygienic conditions are of central importance and the insights gained through several investigations have practical significance today. In contrast, the maintenance of environment and surface disinfection is still controversial and demands novel disinfectants to meet the required criteria. The healthcare centers are fraught with various microorganisms and serve as a point source for multidrug resistance in patients which is more critical to treat. Therefore, it has begun a comprehensive plan in hospitals to focus on disinfection and maintenance of hygiene which is not always appreciated. The urgency to determine the effectiveness of disinfectants is often questioned. The review article shows how the existing problems could be solved by a systematic approach and reports on effective evaluation studies that meet the requirements.
Collapse
Affiliation(s)
- Kannappan Santhakumar
- 1School of Advanced Sciences, VIT University, Tamil Nadu, India
- 2Carbon dioxide Research and Green Technologies Center, VIT University, Tamil Nadu, India
| | | |
Collapse
|
9
|
Probabilistic risk model of norovirus transmission during handling and preparation of fresh produce in school foodservice operations. Int J Food Microbiol 2019; 290:159-169. [DOI: 10.1016/j.ijfoodmicro.2018.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 09/04/2018] [Accepted: 09/29/2018] [Indexed: 12/30/2022]
|
10
|
Smeringaiova I, Nyc O, Trosan P, Spatenka J, Burkert J, Bednar J, Jirsova K. Antimicrobial efficiency and stability of two decontamination solutions. Cell Tissue Bank 2018; 19:581-589. [PMID: 30062597 DOI: 10.1007/s10561-018-9707-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/22/2018] [Indexed: 11/26/2022]
Abstract
Two decontamination solutions, commercially produced BASE•128 and laboratory decontamination solution (LDS), with analogous content of antibiotic and antimycotic agents, were compared in their antimicrobial efficiency and stability (pH and osmolarity). Both solutions were compared immediately after thawing aliquots frozen for 1, 3 or 6 months. Agar well diffusion method was used to test their antimicrobial efficiency against five human pathogens: Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis, Escherichia coli and Enterococcus faecalis. The difference in the inhibition of growth between the two decontamination solutions was mostly not statistically significant, with few exceptions. The most pronounced difference between the LDS and BASE•128 was observed in their decontamination efficacy against E. coli and E. faecalis, where the LDS showed to be more efficient than BASE•128. The osmolarity value of LDS decreased with cold-storage, the osmolarity values of the BASE•128 could not be measured as they were below the range of the osmometer. Slight changes were found in pH of the less stable LDS solution, whose pH increased from initial value 7.36 ± 0.07 to 7.72 ± 0.19 after 6 m-storage. We verified that BASE•128 and LDS are similarly efficient in elimination of possible placental bacterial contaminants and may be used for decontamination of various tissues.
Collapse
Affiliation(s)
- Ingrida Smeringaiova
- Laboratory of the Biology and Pathology of the Eye, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Department of Transplantation and Tissue Bank, Motol University Hospital, Prague, Czech Republic
| | - Otakar Nyc
- Department of Clinical Microbiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peter Trosan
- Laboratory of the Biology and Pathology of the Eye, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Department of Transplantation and Tissue Bank, Motol University Hospital, Prague, Czech Republic
| | - Jaroslav Spatenka
- Department of Transplantation and Tissue Bank, Motol University Hospital, Prague, Czech Republic
| | - Jan Burkert
- Department of Transplantation and Tissue Bank, Motol University Hospital, Prague, Czech Republic
| | - Jan Bednar
- Laboratory of the Biology and Pathology of the Eye, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
- Department of Transplantation and Tissue Bank, Motol University Hospital, Prague, Czech Republic.
| |
Collapse
|
11
|
Hayashi M, Kawamura K, Matsui M, Suzuki M, Suzuki S, Shibayama K, Arakawa Y. Reduction in chlorhexidine efficacy against multi-drug-resistant Acinetobacter baumannii international clone II. J Hosp Infect 2016; 95:318-323. [PMID: 28159381 DOI: 10.1016/j.jhin.2016.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/01/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Nosocomial infections caused by Acinetobacter baumannii international clone II (IC II) can cause severe clinical outcomes. AIM Differential evaluation of bactericidal efficacy of chlorhexidine gluconate (CHX) and benzethonium chloride (BZT) disinfectants against IC II and non-IC II isolates. METHODS Minimum inhibitory concentrations (MICs) of CHX and BZT were determined for 137 A. baumannii IC II, 99 non-IC II and 69 non-baumannii isolates, further classified according to MIC values into disinfectant-reduced susceptible (DRS) and disinfectant-susceptible (DS) groups. Time-kill curves and minimum bactericidal concentrations (MBCs) were evaluated for representative isolates in each group. RESULTS CHX and BZT MIC90s for IC II isolates were 100 and 175mg/L, respectively, but those for non-IC II and non-baumannii isolates were <100mg/L. Nevertheless, time-kill curves indicated that CHX and BZT reduced live bacterial cell number by 5 log10 for IC II and non-IC II isolates within 30s when used at 1000mg/L, comparable to practical use concentrations. CHX MBC at 30s was 1000mg/L for IC II and non-IC II isolates, and was not influenced by addition of 3% bovine serum albumin (BSA); BZT MBC at 30s was 100mg/L without BSA and increased up to 500mg/L upon addition of BSA. No significant differences in BSA were found between DRS and DS isolates. CONCLUSION CHX and BZT were effective against Acinetobacter spp. including IC II at a concentration of 1000mg/L and exposure for at least 30s, but their concentrations should be considered carefully to ensure sufficient effects in both clinical and healthcare settings.
Collapse
Affiliation(s)
- M Hayashi
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - K Kawamura
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan.
| | - M Matsui
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - M Suzuki
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - S Suzuki
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - K Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Y Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Aichi, Japan
| |
Collapse
|
12
|
Sri Ratnamani M, Rao R. P378: Disinfectants policy in the hospitals -is it imperative??? Antimicrob Resist Infect Control 2013. [PMCID: PMC3688245 DOI: 10.1186/2047-2994-2-s1-p378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|