Armstead WM, Vavilala MS. Cerebral Perfusion Pressure Directed-Therapy Modulates Cardiac Dysfunction After Traumatic Brain Injury to Influence Cerebral Autoregulation in Pigs.
Neurocrit Care 2019;
31:476-485. [PMID:
31115824 PMCID:
PMC6868312 DOI:
10.1007/s12028-019-00735-2]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND
Traumatic brain injury (TBI) is an important contributor to morbidity and mortality. Low cerebral perfusion pressure (CPP, mean arterial pressure [MAP] minus intracranial pressure) after TBI is associated with cerebral ischemia, impaired cerebral autoregulation, and poor outcomes. Normalization of CPP and limitation of cerebral autoregulation impairment is a key therapeutic goal. However, some vasoactive agents used to elevate MAP such as phenylephrine (Phe) improve outcome in females but not male piglets after TBI while dopamine (DA) does so in both sexes. Clinical evidence has implicated neurological injuries as a cause of cardiac dysfunction, and we recently described cardiac dysfunction after TBI. Cardiac dysfunction may, in turn, influence brain health. One mechanism of myocyte injury may involve catecholamine excess. We therefore tested the hypothesis that TBI caused cardiac dysfunction and catecholamine excess which may reciprocally be modulated by vasoactive agent choice to normalize CPP and prevent impairment of cerebral autoregulation after injury.
METHODS
TBI was produced in anesthetized pigs equipped with a closed cranial window, and Phe or DA administered to normalize CPP.
RESULTS
Plasma cardiac enzymes troponin and creatine kinase and catecholamines epinephrine and norepinephrine were elevated by TBI, such release potentiated by Phe in males but blocked in female piglets and blocked in both sexes after DA. Cerebral autoregulation was impaired after TBI, worsened by Phe in males but protected in females and males treated with DA. Papaverine-induced dilation was unchanged by fluid percussion brain injury, DA, and Phe.
CONCLUSIONS
These data indicate that pressor choice in elevation of CPP is important in limiting cardiac dysfunction and suggest that DA protects cerebral autoregulation in both sexes via reduction of cardiac biomarkers of injury and catecholamines released after TBI.
Collapse