1
|
Milanez GD, Carlos KB, Adao ME, Ayson BB, Dicon AV, Gahol RAM, Lacre SKS, Marquez FPE, Perez AJM, Karanis P. Epidemiology of free-living amoebae infections in Africa: a review. Pathog Glob Health 2023; 117:527-534. [PMID: 36562083 PMCID: PMC10392319 DOI: 10.1080/20477724.2022.2160890] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
FLA-related conditions are a rare medical occurrence. Despite their rarity, they are considered a public health concern for two reasons: the absence of a regular treatment regimen in the case of central nervous system infections and the fast progression of the symptoms leading to fatal outcomes. A total of 358 articles were retrieved from different databases (91 from PubMed, 26 from NCBI, 138 from Academia, 102 from Science Direct, and one from IJMED). 7 (46.6%) clinical cases came from Egypt, 2 (13.3%) cases of FLA infection came from Nigeria, 3 (20%) cases came from the Gambia, and 1 (6.6%) case was reported from African countries like Algeria, Tunisia, South Africa, and Zambia. Medical conditions caused by free-living amoeba are considered significant public health concerns. These ubiquitous organisms can cause both fatal and debilitating health conditions. Immediate diagnosis of cases and proper hygienic practices are necessary to provide direct medical intervention. They may be the key to reducing the morbidity and mortality rates from FLA-acquired infections. Although several government-led initiatives have been implemented to mitigate a plethora of parasitic diseases, the case of FLA-related conditions in African countries has yet to be realized.
Collapse
Affiliation(s)
- Giovanni D. Milanez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Karlo B. Carlos
- School of Medicine, Saint Louis University, Baguio, Philippines
| | - Mary Erika Adao
- Department of Medical Technology, Far Eastern University, Manila, Philippines
| | - Bernadette B Ayson
- Department of Medical Technology, Far Eastern University, Manila, Philippines
| | - Ariela V. Dicon
- Department of Medical Technology, Far Eastern University, Manila, Philippines
| | | | | | | | - April Jane M. Perez
- Department of Medical Technology, Far Eastern University, Manila, Philippines
| | - Panagiotis Karanis
- Medical Faculty, University of Cologne, Cologne, Germany
- Department of Basic and Clinical Science, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
2
|
The 4-Aminomethylphenoxy-Benzoxaborole AN3057 as a Potential Treatment Option for Primary Amoebic Meningoencephalitis. Antimicrob Agents Chemother 2023; 67:e0150622. [PMID: 36688657 PMCID: PMC9933681 DOI: 10.1128/aac.01506-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Primary amoebic meningoencephalitis is a rare but fatal central nervous system (CNS) disease caused by the "brain-eating amoeba" Naegleria fowleri. A major obstacle is the requirement for drugs with the ability to cross the blood-brain barrier, which are used in extremely high doses, cause severe side effects, and are usually ineffective. We discovered that the 4-aminomethylphenoxy-benzoxaborole AN3057 exhibits nanomolar potency against N. fowleri, and experimental treatment of infected mice significantly prolonged survival and demonstrated a 28% relapse-free cure rate.
Collapse
|
3
|
Chen S, Che C, Lin W, Chen B, Huang X, Liu C, Huang H. Case Report: Recognition of Devastating Primary Amoebic Meningoencephalitis (PAM) Caused by Naegleria fowleri: Another Case in South China Detected via Metagenomics Next-Generation Sequencing Combined With Microscopy and a Review. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.899700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IntroductionPrimary amoebic meningoencephalitis (PAM) caused by Naegleria fowleri is seldom reported in mainland China.MethodsOne case from South China was presented, and the clinical features of the PAM, especially the early CT features, were compared to those in the literatures from PubMed/Web of Science/China National Knowledge internet (CNKI).Case Presentation and ResultsA 47-year-old man with a high fever came to the fever clinic. Twelve hours later, the man lost consciousness and exhibited generalized tonic-clonic seizures and needed ventilator-controlled ventilation. Then, he was admitted to the neurology intensive care unit (NICU). The opening pressure of his cerebrospinal fluid (CSF) was over 500 mm H2O with highly increased leukocyte/protein levels and very low glucose levels. Three days after admission, high copy numbers of Naegleria fowleri amoebae were detected by metagenomics next-generation sequencing (mNGS) and cysts were visible with wet mount microscopy. Four days after admission, the patient experienced brain death. However, the relatives of the patient did not want to give up, and he received amphotericin B (AmB). During hospitalization, he suffered from severe damage to the liver and kidneys and electrolyte disorders that required continuous renal replacement therapy (CRRT).ReviewAll 20 included PAM patients suffered from fever. Seventeen of them had headache and neck stiffness. Ten of them showed generalized brain edema. To date, 7 cases of PAM have been reported in China. Only one patient survived. Most of the patients showed generalized brain edema. Only the surviving patient showed focal edema. He died three months later.ConclusionRapidly progressive meningoencephalitis in which the CSF results are similar to those suffered from a bacterial infection should be considered a possible case of PAM. It can be rapidly detected with microscopy in CSF wet mounts but needs further molecular investigation for confirmation, and mNGS should be a new method used for rapid and precise identification. Moreover, CRRT may prolong the survival time of PAM patients with multiple organ failure.
Collapse
|
4
|
Taravaud A, Fechtali-Moute Z, Loiseau PM, Pomel S. Drugs used for the treatment of cerebral and disseminated infections caused by free-living amoebae. Clin Transl Sci 2021; 14:791-805. [PMID: 33650319 PMCID: PMC8212752 DOI: 10.1111/cts.12955] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Free‐living amoebae (FLAs) are protozoa developing autonomously in diverse natural or artificial environments. The FLAs Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri represent a risk for human health as they can become pathogenic and cause severe cerebral infections, named granulomatous amoebic encephalitis (GAE), Balamuthia amoebic encephalitis (BAE), and primary amoebic meningoencephalitis (PAM), respectively. Additionally, Acanthamoeba sp. can also rarely disseminate to diverse organs, such as the skin, sinuses, or bones, and cause extracerebral disseminated acanthamebiasis (EDA). No consensus treatment has been established for cerebral FLA infections or EDA. The therapy of cerebral and disseminated FLA infections often empirically associates a large diversity of drugs, all exhibiting a high toxicity. Nevertheless, these pathologies lead to a high mortality, above 90% of the cases, even in the presence of a treatment. In the present work, a total of 474 clinical cases of FLA infections gathered from the literature allowed to determine the frequency of usage, as well as the efficacy of the main drugs and drug combinations used in the treatment of these pathologies. The efficacy of drug usage was determined based on the survival rate after drug administration. The most efficient drugs, drug combinations, and their mechanism of action were discussed in regard to the present recommendations for the treatment of GAE, EDA, BAE, and PAM. At the end, this review aims to provide a useful tool for physicians in their choice to optimize the treatment of FLA infections.
Collapse
Affiliation(s)
- Alexandre Taravaud
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Zineb Fechtali-Moute
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Philippe M Loiseau
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sébastien Pomel
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
5
|
Peterson K, Barbel P, Heavey E. Nurse's guide to primary amebic meningoencephalitis. Nursing 2018; 48:42-45. [PMID: 29561369 DOI: 10.1097/01.nurse.0000529806.68041.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Kathleen Peterson
- At the College at Brockport, State University of New York, Kathleen Peterson and Elizabeth Heavey are professors of nursing, and Paula Barbel is an assistant professor of nursing
| | | | | |
Collapse
|
6
|
Cárdenas-Zúñiga R, Silva-Olivares A, Villalba-Magdaleno JDA, Sánchez-Monroy V, Serrano-Luna J, Shibayama M. Amphotericin B induces apoptosis-like programmed cell death in Naegleria fowleri and Naegleria gruberi. MICROBIOLOGY-SGM 2017; 163:940-949. [PMID: 28721850 DOI: 10.1099/mic.0.000500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Naegleria fowleri and Naegleria gruberi belong to the free-living amoebae group. It is widely known that the non-pathogenic species N. gruberi is usually employed as a model to describe molecular pathways in this genus, mainly because its genome has been recently described. However, N. fowleri is an aetiological agent of primary amoebic meningoencephalitis, an acute and fatal disease. Currently, the most widely used drug for its treatment is amphotericin B (AmB). It was previously reported that AmB has an amoebicidal effect in both N. fowleri and N. gruberi trophozoites by inducing morphological changes that resemble programmed cell death (PCD). PCD is a mechanism that activates morphological, biochemical and genetic changes. However, PCD has not yet been characterized in the genus Naegleria. The aim of the present work was to evaluate the typical markers to describe PCD in both amoebae. These results showed that treated trophozoites displayed several parameters of apoptosis-like PCD in both species. We observed ultrastructural changes, an increase in reactive oxygen species, phosphatidylserine externalization and a decrease in intracellular potassium, while DNA degradation was evaluated using the TUNEL assay and agarose gels, and all of these parameters are related to PCD. Finally, we analysed the expression of apoptosis-related genes, such as sir2 and atg8, in N. gruberi. Taken together, our results showed that AmB induces the morphological, biochemical and genetic changes of apoptosis-like PCD in the genus Naegleria.
Collapse
Affiliation(s)
- Roberto Cárdenas-Zúñiga
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Angélica Silva-Olivares
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | | | - Virginia Sánchez-Monroy
- Laboratorio de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politénico Nacional, Calle Guillermo Massieu H. 239, Col. La Escalera, 07320, Mexico City, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| |
Collapse
|
7
|
Martínez-Castillo M, Cárdenas-Zúñiga R, Coronado-Velázquez D, Debnath A, Serrano-Luna J, Shibayama M. Naegleria fowleri after 50 years: is it a neglected pathogen? J Med Microbiol 2016; 65:885-896. [PMID: 27381464 DOI: 10.1099/jmm.0.000303] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been 50 years since the first case of primary amoebic meningoencephalitis (PAM), an acute and rapidly fatal disease of the central nervous system (CNS), was reported in Australia. It is now known that the aetiological agent of PAM is Naegleria fowleri, an amoeba that is commonly known as 'the brain-eating amoeba'. N. fowleri infects humans of different ages who are in contact with water contaminated with this micro-organism. N. fowleri is distributed worldwide and is found growing in bodies of freshwater in tropical and subtropical environments. The number of PAM cases has recently increased, and the rate of recovery from PAM has been estimated at only 5 %. Amphotericin B has been used to treat patients with PAM. However, it is important to note that there is no specific treatment for PAM. Moreover, this amoeba is considered a neglected micro-organism. Researchers have exerted great effort to design effective drugs to treat PAM and to understand the pathogenesis of PAM over the past 50 years, such as its pathology, molecular and cellular biology, diagnosis and prevention, and its biological implications, including its pathogenic genotypes, its distribution and its ecology. Given the rapid progression of PAM and its high mortality rate, it is important that investigations continue and that researchers collaborate to gain better understanding of the pathogenesis of this disease and, consequently, to improve the diagnosis and treatment of this devastating infection of the CNS.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Roberto Cárdenas-Zúñiga
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Daniel Coronado-Velázquez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| |
Collapse
|