1
|
Avon Í, Monferrari-Martins B, Ferreira JW, Campos GAA, Maior RS, Mortari MR. Anxiolytic-like effects of Prolistarina: A bioinspired peptide from the venom of social wasps. Behav Brain Res 2025; 479:115362. [PMID: 39615797 DOI: 10.1016/j.bbr.2024.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
Pathological anxiety is among the most common psychiatric disorders. Despite advancements, predominant pharmacological treatments can lead to physical, chemical, and psychological dependence. Venoms of arthropods are important sources of neuroactive peptides with potential therapeutic applications for the treatment of neurological disorders. In this context, the anxiolytic effects of Prolistarina (PLT), a bioinspired peptide extracted from the venom of the social wasp Synoeca surinama, were evaluated in mice at the Elevated Plus Maze and Open Field tests. Intracerebroventricular infusions of PLT (6 and 2 nmol) were compared to diazepam (DZP; 2 mg/kg, ip) and pentylenetetrazole (PTZ; 30 mg/kg, ip). Both doses of PLT induced an increase in time spent in the open arms, although 6 nmol was significantly lower than DZP. Locomotor activity was not affected by PLT compared to vehicle, but a significant difference between 2 and 6 nmol was observed. Radioligand binding assays with PLT revealed no affinity for diazepam, naloxone or GABA binding sites. These preliminary results indicate an anxiolytic profile of PLT, but furthers studies are warranted to determine the mechanisms thereof.
Collapse
Affiliation(s)
- Ísis Avon
- Laboratory of Neuropharmacology, Department of Physiological Sciences. Institute of Biological Sciences. University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - Beatriz Monferrari-Martins
- Laboratory of Neuroscience, Metabolism, and Behavior. Department of Physiological Sciences. Institute of Biological Sciences. University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - Jéssica W Ferreira
- Laboratory of Neuropharmacology, Department of Physiological Sciences. Institute of Biological Sciences. University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - Gabriel A A Campos
- Laboratory of Neuropharmacology, Department of Physiological Sciences. Institute of Biological Sciences. University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - Rafael S Maior
- Laboratory of Neuroscience, Metabolism, and Behavior. Department of Physiological Sciences. Institute of Biological Sciences. University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil.
| | - Márcia R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences. Institute of Biological Sciences. University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| |
Collapse
|
2
|
Zainal Abidin SA, Liew AKY, Othman I, Shaikh F. Animal Venoms as Potential Source of Anticonvulsants. F1000Res 2024; 13:225. [PMID: 38919947 PMCID: PMC11196940 DOI: 10.12688/f1000research.147027.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 06/27/2024] Open
Abstract
Epilepsy affects millions of people worldwide, and there is an urgent need to develop safe and effective therapeutic agents. Animal venoms contain diverse bioactive compounds like proteins, peptides, and small molecules, which may possess medicinal properties against epilepsy. In recent years, research has shown that venoms from various organisms such as spiders, ants, bees, wasps, and conus snails have anticonvulsant and antiepileptic effects by targeting specific receptors and ion channels. This review underscores the significance of purified proteins and toxins from these sources as potential therapeutic agents for epilepsy. In conclusion, this review emphasizes the valuable role of animal venoms as a natural resource for further exploration in epilepsy treatment research.
Collapse
Affiliation(s)
- Syafiq Asnawi Zainal Abidin
- Monash University Malaysia, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Anthony Kin Yip Liew
- Monash University Malaysia, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Iekhsan Othman
- Monash University Malaysia, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Farooq Shaikh
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia
| |
Collapse
|
3
|
Paes LCF, Lima DB, Silva DMAD, Valentin JT, Aquino PEAD, García-Jareño AB, Orzaéz M, Fonteles MMDF, Martins AMC. Exploring the neuroprotective potential of antimicrobial peptides from Dinoponera quadriceps venom against pentylenetetrazole-induced seizures in vivo. Toxicon 2024; 237:107538. [PMID: 38030096 DOI: 10.1016/j.toxicon.2023.107538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Epilepsy affects around 50 million people worldwide and 30% of patients have difficulty controlling the disease. The search for substances that can fill the existing gaps in the treatment of epilepsy is of great importance. Arthropod venoms are promising sources for this purpose due to the presence of small peptides that modulate the activity of ion channels and neuron receptors. The aim of this study was to investigate dinoponeratoxins from the Dinoponera quadriceps ant venom (M-PONTX-Dq3a, M-PONTX-Dq3b and M-PONTX-Dq3c) as potential anticonvulsants. We evaluated them in a seizure model induced by pentylenetetrazole (PTZ) in male swiss mice. Interestingly, intraperitoneal treatment with each peptide increased the time until the first seizure and the percentage of survival, with M-PONTX-Dq3b showing the best results. M-PONTX-Dq3a was discarded due to the appearance of some signs of toxicity with the increase in malondialdehyde (MDA) levels in the striatum. Both, M-PONTX-Dq3b and M-PONTX-Dq3c decreased iNOS and TNF-α in the hippocampus. Notably, M-PONTX-Dq3c treatment decreased the levels of MDA and nitrite in the cortex and hippocampus. Our results indicate that, M-PONTX-Dq3b and M-PONTX-Dq3c have anticonvulsant activity and exhibit anti-inflammatory effects in epilepsy, offering new perspectives for biopharmaceutical development.
Collapse
Affiliation(s)
- Livia Correia Fernandes Paes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil
| | - Dânya Bandeira Lima
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil.
| | - Daniel Moreira Alves da Silva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil
| | - José Tiago Valentin
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil
| | | | - Alicia Belén García-Jareño
- Targeted Therapies on Cancer and Inflammation Lab and Peptide Synthesis Platform, Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain
| | - Mar Orzaéz
- Targeted Therapies on Cancer and Inflammation Lab and Peptide Synthesis Platform, Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain
| | - Marta Maria de França Fonteles
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-275, Ceará, Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal Do Ceará, Fortaleza, 60430372, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-275, Ceará, Brazil.
| |
Collapse
|
4
|
Abstract
Fine particulate matter (PM2.5) has been reported to be associated with neurological disorders. However, the effects of PM2.5 on changes in metabolic and lipid profile of the brain are unclear. In this study, global metabolomics and lipidomics in mice cortex were investigated from the analyses by ultraperformance liquid chromatography-Orbitrap mass spectrometry. The partial least-squares discriminant analysis showed that the metabolite and lipid profiles were significantly altered by PM2.5 exposure. The changed metabolic pathways including alanine, aspartate, and glutamate metabolism, carnitine metabolism, and glycerophospholipid remodeling pathway were found to be associated with a neurodegenerative process according to their corresponding molecular mechanisms. Our results indicated that PM2.5 exposure could induce neurological damage.
Collapse
|
5
|
Lopes KS, Quintanilha MVT, de Souza ACB, Zamudio-Zuñiga F, Possani LD, Mortari MR. Antiseizure potential of peptides from the venom of social wasp Chartergellus communis against chemically-induced seizures. Toxicon 2021; 194:23-36. [PMID: 33610635 DOI: 10.1016/j.toxicon.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Epilepsy is one of the most common neurological diseases in the world. The objective of this research was to investigate a new peptide from the venom of the social wasp Chartergellus communis useful to the study or pharmacotherapy of epilepsy. The wasps were collected, and their venom was extracted. Afterward, the steps of fractionation, sequencing, and identification were carried out to obtain four peptides. These molecules were synthesized for behavioral evaluation tests and electroencephalographic assays to determine their antiseizure potential (induction of acute seizures using the chemical compounds, pentylenetetrazole - PTZ, and pilocarpine - PILO) and analysis of neuropharmacological profile (general spontaneous activity and alteration in motor coordination). Chartergellus-CP1 (i.c.v. - 3.0 μg/animal) caused beneficial alterations in some of the parameters evaluated in both models: PTZ (latency and duration of maximum seizures) and PILO (latency and duration of, and protection against, maximum seizures, and reduction of the median of the seizure scores. When evaluated in 3 doses in the seizure model induced by PILO, the dose of 3.0 μg/animal protected the animals against seizures, with an estimated ED50 of 1.49 μg/animal. Electroencephalographic evaluation of Chartergellus-CP1 showed an improvement in latency, quantity, and percentage of protection against generalized electroencephalographic seizures in the PILO model. Further, Chartergellus-CP1 did not cause adverse effects on general spontaneous activity and motor coordination of animals. This study demonstrated how compounds isolated from wasps' venom may be important resources in the search for new drugs. Such compounds can be considered valuable therapeutic and biotechnological tools for the study and future treatment of epileptic disorders. In this context, a peptide that is potentially useful for epilepsy pharmacotherapy was identified in the venom of C. communis.
Collapse
Affiliation(s)
- Kamila Soares Lopes
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | | | | - Fernando Zamudio-Zuñiga
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Morelos, Mexico
| | - Lourival Domingos Possani
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Morelos, Mexico
| | - Márcia Renata Mortari
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
6
|
Fraternine, a Novel Wasp Peptide, Protects against Motor Impairments in 6-OHDA Model of Parkinsonism. Toxins (Basel) 2020; 12:toxins12090550. [PMID: 32867207 PMCID: PMC7551070 DOI: 10.3390/toxins12090550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition that affects the Central Nervous System (CNS). Insect venoms show high molecular variability and selectivity in the CNS of mammals and present potential for the development of new drugs for the treatment of PD. In this study, we isolated and identified a component of the venom of the social wasp Parachartergus fraternus and evaluated its neuroprotective activity in the murine model of PD. For this purpose, the venom was filtered and separated through HPLC; fractions were analyzed through mass spectrometry and the active fraction was identified as a novel peptide, called Fraternine. We performed two behavioral tests to evaluate motor discoordination, as well as an apomorphine-induced rotation test. We also conducted an immunohistochemical assay to assess protection in TH+ neurons in the Substantia Nigra (SN) region. Group treated with 10 μg/animal of Fraternine remained longer in the rotarod compared to the lesioned group. In the apomorphine test, Fraternine decreased the number of rotations between treatments. This dose also inhibited dopaminergic neuronal loss, as indicated by immunohistochemical analysis. This study identified a novel peptide able to prevent the death of dopaminergic neurons of the SN and recover motor deficit in a 6-OHDA-induced murine model of PD.
Collapse
|
7
|
Nôga DAMF, Brandão LEM, Cagni FC, Silva D, de Azevedo DLO, Araújo A, Dos Santos WF, Miranda A, da Silva RH, Ribeiro AM. Anticonvulsant Effects of Fractions Isolated from Dinoponera quadriceps (Kempt) Ant Venom (Formicidae: Ponerinae). Toxins (Basel) 2016; 9:toxins9010005. [PMID: 28025529 PMCID: PMC5308238 DOI: 10.3390/toxins9010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022] Open
Abstract
Natural products, sources of new pharmacological substances, have large chemical diversity and architectural complexity. In this context, some toxins obtained from invertebrate venoms have anticonvulsant effects. Epilepsy is a neurological disorder that affects about 65 million people worldwide, and approximately 30% of cases are resistant to pharmacological treatment. Previous studies from our group show that the denatured venom of the ant Dinoponera quadriceps (Kempt) protects mice against bicuculline (BIC)-induced seizures and death. The aim of this study was to investigate the anticonvulsant activity of compounds isolated from D. quadriceps venom against seizures induced by BIC in mice. Crude venom was fractionated by high-performance liquid chromatography (HPLC) resulting in six fractions referred to as DqTx1-DqTx6. A liquid chromatography-mass spectrometry (LC/MS) analysis revealed a major 431 Da compound in fractions DqTx1 and DqTx2. Fractions DqTx3 and DqTx4 showed a compound of 2451 Da and DqTx5 revealed a 2436 Da compound. Furthermore, the DqTx6 fraction exhibited a major component with a molecular weight of 13,196 Da. Each fraction (1 mg/mL) was microinjected into the lateral ventricle of mice, and the animals were observed in an open field. We did not observe behavioral alterations when the fractions were given alone. Conversely, when the fractions were microinjected 20 min prior to the administration of BIC (21.6 nM), DqTx1, DqTx4, and DqTx6 fractions increased the latency for onset of tonic-clonic seizures. Moreover, all fractions, except DqTx5, increased latency to death. The more relevant result was obtained with the DqTx6 fraction, which protected 62.5% of the animals against tonic-clonic seizures. Furthermore, this fraction protected 100% of the animals from seizure episodes followed by death. Taken together, these findings indicate that compounds from ant venom might be a potential source of new anticonvulsants molecules.
Collapse
Affiliation(s)
| | | | - Fernanda Carvalho Cagni
- Physiology Department, University Federal of Rio Grande of Norte, Natal, RN 59078-970, Brazil.
| | - Delano Silva
- Physiology Department, University Federal of Rio Grande of Norte, Natal, RN 59078-970, Brazil.
| | | | - Arrilton Araújo
- Physiology Department, University Federal of Rio Grande of Norte, Natal, RN 59078-970, Brazil.
| | | | - Antonio Miranda
- Biophysics Department, Federal University of São Paulo, São Paulo, SP 04023-062, Brazil.
| | - Regina Helena da Silva
- Pharmacology Department, Federal University of São Paulo, São Paulo, SP 04023-062, Brazil.
| | | |
Collapse
|
8
|
Gomes FMM, Paniago CK, Freire DO, Souza ACB, Lima MR, Oliveira-Júnior NG, Franco OL, Mortari MR. Anxiolytic-like effect of a novel peptide isolated from the venom of the social wasp Synoeca surinama. Toxicon 2016; 122:39-42. [PMID: 27664832 DOI: 10.1016/j.toxicon.2016.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 01/04/2023]
Abstract
Pathological anxiety is among the most common psychiatric illnesses, but current treatment is highly limited. In this study, we investigated the potential anxiolytic-like effects of a peptide isolated from Synoeca surinama venom. Rats treated with this peptide spent more time exploring the open arms of elevated plus maze, which indicates an anxiolytic-like profile for this peptide. This study is the first to show the pharmacological use of S. surinama venom in the treatment of anxiety.
Collapse
Affiliation(s)
- Flávia M M Gomes
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| | - Cássia K Paniago
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| | - Daniel O Freire
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| | - Adolfo C B Souza
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| | - Marcos R Lima
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil; Evolutionary Ecology Laboratory, Department of Animal and Plant Biology, Biological Sciences Center, State University of Londrina, Londrina, Brazil.
| | - Nelson G Oliveira-Júnior
- S-Inova Biotech, Post-Graduation on Biotechnology, Dom Bosco Catholic University, Campo Grande, Brazil; Center for Biochemical and Proteomics Analyses, Catholic University of Brasília, Brasília, Brazil.
| | - Octavio L Franco
- S-Inova Biotech, Post-Graduation on Biotechnology, Dom Bosco Catholic University, Campo Grande, Brazil; Center for Biochemical and Proteomics Analyses, Catholic University of Brasília, Brasília, Brazil.
| | - Márcia R Mortari
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
9
|
dos Anjos LC, Gomes FMM, do Couto LL, Mourão CA, Moreira KG, Silva LP, Mortari MR. Anxiolytic activity and evaluation of potentially adverse effects of a bradykinin-related peptide isolated from a social wasp venom. Life Sci 2016; 149:153-9. [PMID: 26898126 DOI: 10.1016/j.lfs.2016.02.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are major health problems in terms of costs stemming from sick leave, disabilities, healthcare and premature mortality. Despite the availability of classic anxiolytics, some anxiety disorders are still resistant to treatment, with higher rates of adverse effects. In this respect, several toxins isolated from arthropod venoms are useful in identifying new compounds to treat neurological disorders, particularly pathological anxiety. Thus, the aims of this study were to identify and characterize an anxiolytic peptide isolated from the venom of the social wasp Polybia paulista. The peptide was identified as Polisteskinin R, with nominal molecular mass [M+H](+)=1301Da and primary structure consisting of Ala-Arg-Arg-Pro-Pro-Gly-Phe-Thr-Pro-Phe-Arg-OH. The anxiolytic effect was tested using the elevated plus maze test. Moreover, adverse effects on the spontaneous behavior and motor coordination of animals were assessed using the open field and rotarod tests. Polisteskinin R induced a dose-dependent anxiolytic effect. Animals treated with the peptide and diazepam spent significantly more time into the open arms when compared to the groups treated with the vehicle and pentylenetetrazole. No significant differences in spontaneous behavior or motor coordination were observed between the groups, showing that the peptide was well tolerated. The interaction by agonists in both known BK receptors induces a variability of physiological effects; Polisteskinin R can act on these receptors, inducing modulatory activity and thus, attenuating anxiety behaviors. The results of this study demonstrated that the compound Polisteskinin R exerted potent anxiolytic effects and its analogues are promising candidates for experimental pharmacology.
Collapse
Affiliation(s)
- Lilian Carneiro dos Anjos
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil; Graduate Program of Animal Biology, University of Brasília, Brasília, DF, Brazil
| | - Flávia Maria Medeiros Gomes
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil; Graduate Program of Animal Biology, University of Brasília, Brasília, DF, Brazil
| | - Lucianna Lopes do Couto
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Cecília Alves Mourão
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | | | - Luciano Paulino Silva
- Graduate Program of Animal Biology, University of Brasília, Brasília, DF, Brazil; Laboratory of Mass Spectrometry and Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Márcia Renata Mortari
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil; Graduate Program of Animal Biology, University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
10
|
Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools. Toxins (Basel) 2015; 7:3179-209. [PMID: 26295258 PMCID: PMC4549745 DOI: 10.3390/toxins7083179] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/01/2015] [Accepted: 08/05/2015] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are relentlessly progressive, severely impacting affected patients, families and society as a whole. Increased life expectancy has made these diseases more common worldwide. Unfortunately, available drugs have insufficient therapeutic effects on many subtypes of these intractable diseases, and adverse effects hamper continued treatment. Wasp and bee venoms and their components are potential means of managing or reducing these effects and provide new alternatives for the control of neurodegenerative diseases. These venoms and their components are well-known and irrefutable sources of neuroprotectors or neuromodulators. In this respect, the present study reviews our current understanding of the mechanisms of action and future prospects regarding the use of new drugs derived from wasp and bee venom in the treatment of major neurodegenerative disorders, including Alzheimer’s Disease, Parkinson’s Disease, Epilepsy, Multiple Sclerosis and Amyotrophic Lateral Sclerosis.
Collapse
|
11
|
Monge-Fuentes V, Gomes FMM, Campos GAA, Silva JDC, Biolchi AM, Dos Anjos LC, Gonçalves JC, Lopes KS, Mortari MR. Neuroactive compounds obtained from arthropod venoms as new therapeutic platforms for the treatment of neurological disorders. J Venom Anim Toxins Incl Trop Dis 2015; 21:31. [PMID: 26257776 PMCID: PMC4529710 DOI: 10.1186/s40409-015-0031-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/28/2015] [Indexed: 01/25/2023] Open
Abstract
The impact of neurological disorders in society is growing with alarming estimations for an incidence increase in the next decades. These disorders are generally chronic and can affect individuals early during productive life, imposing real limitations on the performance of their social roles. Patients can have their independence, autonomy, freedom, self-image, and self-confidence affected. In spite of their availability, drugs for the treatment of these disorders are commonly associated with side effects, which can vary in frequency and severity. Currently, no effective cure is known. Nowadays, the biopharmaceutical research community widely recognizes arthropod venoms as a rich source of bioactive compounds, providing a plethora of possibilities for the discovery of new neuroactive compounds, opening up novel and attractive opportunities in this field. Several identified molecules with a neuropharmacological profile can act in the central nervous system on different neuronal targets, rendering them useful tools for the study of neurological disorders. In this context, this review aims to describe the current main compounds extracted from arthropod venoms for the treatment of five major existing neurological disorders: stroke, Alzheimer’s disease, epilepsy, Parkinson’s disease, and pathological anxiety.
Collapse
Affiliation(s)
- Victoria Monge-Fuentes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Flávia Maria Medeiros Gomes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Gabriel Avohay Alves Campos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Juliana de Castro Silva
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Andréia Mayer Biolchi
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Lilian Carneiro Dos Anjos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Jacqueline Coimbra Gonçalves
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Kamila Soares Lopes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF CEP 70.910-900, Brasília, Brazil
| |
Collapse
|