1
|
Khamnuan S, Phrutivorapongkul A, Pitchakarn P, Buacheen P, Karinchai J, Chittasupho C, Na Takuathung M, Theansungnoen T, Thongkhao K, Intharuksa A. The Identification and Cytotoxic Evaluation of Nutmeg ( Myristica fragrans Houtt.) and Its Substituents. Foods 2023; 12:4211. [PMID: 38231602 DOI: 10.3390/foods12234211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
The aril and seed of nutmeg, Myristica fragrans Houtt. (Myristicaceae), hold significant value in various industries globally. Our preliminary research found two morphological variations: a globose shape and an oval shape. Due to these different characteristics, the safety of consumers is of primary concern. Thus, authentication and comparative pharmacological and toxicity analyses are necessary. In this study, pharmacognostic and advanced phytochemical analyses, DNA barcoding, cytotoxicity, and the anti-nitric oxide production of commercial Thai nutmeg were examined. Via morphologic examinations and TLC fingerprinting, all the sampled aril and seed were categorized into globose and oval-shaped groups. The results of HPLC, GC-MS, and LC-MS/MS experiments revealed distinct differences between these groups. The DNA barcoding of the trnH-psbA region using the BLAST method and neighbor-joining tree analyses confirmed the globose nutmeg as M. fragrans and the oval-shaped variant as M. argentea. A comparison was then carried out between the potential toxicity and anti-inflammatory capabilities of M. fragrans and M. argentea. Cytotoxicity tests on HaCaT, 3T3-L1, Caco-2, HEK293, and RAW264.7 were performed using both methanolic extracts and volatile oil from the arils and seeds of both species. This study concludes that blending or substituting these two species maintains their therapeutic integrity without posing safety concerns.
Collapse
Affiliation(s)
- Suthiwat Khamnuan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Suthep, Mueang, Chiang Mai 50200, Thailand
| | - Ampai Phrutivorapongkul
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Suthep, Mueang, Chiang Mai 50200, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensiri Buacheen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Suthep, Mueang, Chiang Mai 50200, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tinnakorn Theansungnoen
- Green Cosmetic Technology Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kannika Thongkhao
- School of Languages and General Education, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Suthep, Mueang, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Molecular identification of medicinal plants with amplicon length polymorphism using universal DNA barcodes of the atpF- atpH, trnL and trnH- psbA regions. 3 Biotech 2019; 9:188. [PMID: 31065488 DOI: 10.1007/s13205-019-1724-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/19/2019] [Indexed: 12/11/2022] Open
Abstract
Amplification success and species discrimination efficiency of universal DNA barcode primers (trnH-psbA, trnL, ycf1b, atpF-atpH, matK and rbcL) was evaluated in 46 representative medicinal plant species of 28 families on agarose gel. The results showed that amplicons length polymorphism revealed by the primers atpF-atpH, trnH-psbA and trnL can simultaneously discriminate all the 46 species under study precisely. Some of the plant species included in this study are used as potential adulterants to other plant species. We were able to successfully discriminate the plant species from their potential substitute. Vitex negundo is an adulterant of Ocimum sanctum which has been successfully discriminated by all these three markers. Another example of adulteration between Bacopa monnieri and Centella asiatica was successfully discriminated by atpF-atpH, trnL and trnH-psbA on the basis of variability in amplicon length of these two medicinal herbs. Further, Cassia tora and Cassia fistula are also adulterants for each other and variability in amplicon length between these two species was revealed by atpF-atpH and trnH-psbA markers. A colour code distance matrix based on amplicon length polymorphism was designed to select primers which can effectively discriminate plants species on the basis of their amplicon length. Discrimination of plant species with the universal markers on agarose gel is a noble and inexpensive approach as it does not require sequencing of amplicons. This procedure will provide a way for the development of diagnostic markers to identify adulteration not only in herbal drug formulations but also in food material.
Collapse
|
3
|
Sheth BP, Thaker VS. DNA barcoding and traditional taxonomy: an integrated approach for biodiversity conservation. Genome 2017; 60:618-628. [DOI: 10.1139/gen-2015-0167] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Biological diversity is depleting at an alarming rate. Additionally, a vast amount of biodiversity still remains undiscovered. Taxonomy has been serving the purpose of describing, naming, and classifying species for more than 250 years. DNA taxonomy and barcoding have accelerated the rate of this process, thereby providing a tool for conservation practice. DNA barcoding and traditional taxonomy have their own inherent merits and demerits. The synergistic use of both methods, in the form of integrative taxonomy, has the potential to contribute to biodiversity conservation in a pragmatic timeframe and overcome their individual drawbacks. In this review, we discuss the basics of both these methods of biological identification (traditional taxonomy and DNA barcoding), the technical advances in integrative taxonomy, and future trends. We also present a comprehensive compilation of published examples of integrative taxonomy that refer to nine topics within biodiversity conservation. Morphological and molecular species limits were observed to be congruent in ∼41% of the 58 source studies. The majority of the studies highlighted the description of cryptic diversity through the use of molecular data, whereas research areas like endemism, biological invasion, and threatened species were less discussed in the literature.
Collapse
Affiliation(s)
- Bhavisha P. Sheth
- Centre for Advanced Studies in Plant Biotechnology and Genetic Engineering, Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
- Centre for Advanced Studies in Plant Biotechnology and Genetic Engineering, Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Vrinda S. Thaker
- Centre for Advanced Studies in Plant Biotechnology and Genetic Engineering, Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
- Centre for Advanced Studies in Plant Biotechnology and Genetic Engineering, Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
| |
Collapse
|
4
|
Mohammed Abubakar B, Mohd Salleh F, Shamsir Omar MS, Wagiran A. Review: DNA Barcoding and Chromatography Fingerprints for the Authentication of Botanicals in Herbal Medicinal Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:1352948. [PMID: 28536641 PMCID: PMC5425840 DOI: 10.1155/2017/1352948] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/11/2017] [Accepted: 03/16/2017] [Indexed: 01/28/2023]
Abstract
In the last two decades, there has been a tremendous increase in the global use of herbal medicinal products (HMPs) due to their claimed health benefits. This has led to increase in their demand and consequently, also, resulted in massive adulteration. This is due to the fact that most of the traditional methods cannot identify closely related species in a process product form. Therefore the urgent need for simple and rapid identification methods resulted in the discovery of a novel technique. DNA barcoding is a process that uses short DNA sequence from the standard genome for species identification. This technique is reliable and is not affected by external factors such as climates, age, or plant part. The difficulties in isolation of DNA of high quality in addition to other factors are among the challenges encountered using the DNA barcoding in the authentication of HMP. These limitations indicated that using DNA barcoding alone may ineffectively authenticate the HMP. Therefore, the combination of DNA barcoding with chromatographic fingerprint, a popular and generally accepted technique for the assessment and quality control of HMP, will offer an efficient solution to effectively evaluate the authenticity and quality consistency of HMP. Detailed and quality information about the main composition of the HMPs will help to ascertain their efficacy and safety as these are very important for quality control.
Collapse
Affiliation(s)
- Bashir Mohammed Abubakar
- Department of Biotechnology & Medical Engineering, Faculty of Biosciences and Medical Engineering, UTM, 81310 Skudai, Johor, Malaysia
- Department of Biological Sciences, Bauchi State University Gadau, PMB 065, Bauchi, Nigeria
| | - Faezah Mohd Salleh
- Department of Biotechnology & Medical Engineering, Faculty of Biosciences and Medical Engineering, UTM, 81310 Skudai, Johor, Malaysia
| | - Mohd Shahir Shamsir Omar
- Department of Biosciences & Health Sciences, Faculty of Biosciences and Medical Engineering, UTM, 81310 Skudai, Johor, Malaysia
| | - Alina Wagiran
- Department of Biotechnology & Medical Engineering, Faculty of Biosciences and Medical Engineering, UTM, 81310 Skudai, Johor, Malaysia
| |
Collapse
|