1
|
Sarkar S, Panikker P, D’Souza S, Shetty R, Mohan RR, Ghosh A. Corneal Regeneration Using Gene Therapy Approaches. Cells 2023; 12:1280. [PMID: 37174680 PMCID: PMC10177166 DOI: 10.3390/cells12091280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
One of the most remarkable advancements in medical treatments of corneal diseases in recent decades has been corneal transplantation. However, corneal transplants, including lamellar strategies, have their own set of challenges, such as graft rejection, delayed graft failure, shortage of donor corneas, repeated treatments, and post-surgical complications. Corneal defects and diseases are one of the leading causes of blindness globally; therefore, there is a need for gene-based interventions that may mitigate some of these challenges and help reduce the burden of blindness. Corneas being immune-advantaged, uniquely avascular, and transparent is ideal for gene therapy approaches. Well-established corneal surgical techniques as well as their ease of accessibility for examination and manipulation makes corneas suitable for in vivo and ex vivo gene therapy. In this review, we focus on the most recent advances in the area of corneal regeneration using gene therapy and on the strategies involved in the development of such therapies. We also discuss the challenges and potential of gene therapy for the treatment of corneal diseases. Additionally, we discuss the translational aspects of gene therapy, including different types of vectors, particularly focusing on recombinant AAV that may help advance targeted therapeutics for corneal defects and diseases.
Collapse
Affiliation(s)
- Subhradeep Sarkar
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Priyalakshmi Panikker
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
| | - Sharon D’Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore 560010, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore 560010, Karnataka, India
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
| |
Collapse
|
2
|
Valdivia E, Rother T, Yuzefovych Y, Hack F, Wenzel N, Blasczyk R, Krezdorn N, Figueiredo C. Genetic modification of limbs using ex vivo machine perfusion. Hum Gene Ther 2021; 33:460-471. [PMID: 34779223 DOI: 10.1089/hum.2021.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic engineering is a promising tool to repair genetic disorders, improve graft function or to reduce immune responses towards the allografts. Ex vivo organ perfusion systems have the potential to mitigate ischemic-reperfusion injury, prolong preservation time or even rescue organ function. We aim to combine both technologies to develop a modular platform allowing the genetic modification of vascularized composite (VC) allografts. Rat hind limbs were perfused ex vivo under subnormothermic conditions with lentiviral vectors. Specific perfusion conditions such as controlled pressure, temperature and flow rates were optimized to support the genetic modification of the limbs. Genetic modification was detected in vascular, muscular and dermal limb tissues. Remarkably, skin follicular and interfollicular keratinocytes as well as endothelial cells (ECs) showed stable transgene expression. Furthermore, levels of injury markers such as lactate, myoglobin and lactate dehydrogenase (LDH) as well as histological analyses showed that ex vivo limb perfusion with lentiviral vectors did not cause tissue damage and limb cytokine secretion signatures were not significantly affected. The use of ex vivo VC perfusion in combination with lentiviral vectors allows an efficient and stable genetic modification of limbs representing a robust platform to genetically engineer limbs towards increasing graft survival after transplantation.
Collapse
Affiliation(s)
- Emilio Valdivia
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Tamina Rother
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Yuliia Yuzefovych
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Franziska Hack
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Nadine Wenzel
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Rainer Blasczyk
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Nicco Krezdorn
- Hannover Medical School, 9177, Clinic for Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover, Niedersachsen, Germany;
| | - Constanca Figueiredo
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| |
Collapse
|
3
|
Mohan RR, Martin LM, Sinha NR. Novel insights into gene therapy in the cornea. Exp Eye Res 2021; 202:108361. [PMID: 33212142 PMCID: PMC9205187 DOI: 10.1016/j.exer.2020.108361] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Corneal disease remains a leading cause of impaired vision world-wide, and advancements in gene therapy continue to develop with promising success to prevent, treat and cure blindness. Ideally, gene therapy requires a vector and gene delivery method that targets treatment of specific cells or tissues and results in a safe and non-immunogenic response. The cornea is a model tissue for gene therapy due to its ease of clinician access and immune-privileged state. Improvements in the past 5-10 years have begun to revolutionize the approach to gene therapy in the cornea with a focus on adeno-associated virus and nanoparticle delivery of single and combination gene therapies. In addition, the potential applications of gene editing (zinc finger nucleases [ZNFs], transcription activator-like effector nucleases [TALENs], Clustered Regularly Interspaced Short Palindromic Repeats/Associated Systems [CRISPR/Cas9]) are rapidly expanding. This review focuses on recent developments in gene therapy for corneal diseases, including promising multiple gene therapy, while outlining a practical approach to the development of such therapies and potential impediments to successful delivery of genes to the cornea.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| | - Lynn M Martin
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
Inomata T, Fujimoto K, Okumura Y, Zhu J, Fujio K, Shokirova H, Miura M, Okano M, Funaki T, Sung J, Negishi N, Murakami A. Novel immunotherapeutic effects of topically administered ripasudil (K-115) on corneal allograft survival. Sci Rep 2020; 10:19817. [PMID: 33188243 PMCID: PMC7666179 DOI: 10.1038/s41598-020-76882-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Corneal allograft survival is mediated by the variety of immunological reactions and wound healing process. Our aim was to explore the effects of topical administration of ripasudil, a selective Rho-associated coiled-coil protein kinase inhibitor, on corneal allograft survival. Ripasudil was administered to mice thrice a day after allogeneic corneal transplantation. Corneal graft survival, opacity, neovascularization, re-epithelization, immune cell infiltration, and mRNA levels of angiogenic and pro-inflammatory factors in the grafted cornea and draining lymph nodes (dLNs) were evaluated with slit-lamp microscopy, immunohistochemistry, flow cytometry, and polymerase chain reaction. Graft survival was significantly prolonged with lower graft opacity and neovascularization scores in 0.4% and 2.0% ripasudil-treated groups, and mRNA levels of angiogenic and pro-inflammatory factors in ripasudil-treated grafted corneas were reduced. Moreover, 0.4% and 2.0% ripasudil reduced CD45+-infiltrated leukocyte frequency, Cd11b and Cd11c mRNA levels, and the frequencies of mature dendritic cells, IFNγ-, and IL-17- producing CD4+T cells in the dLNs of recipients. Re-epithelization rate of the grafted cornea was significantly higher in the 0.4% and 2.0% ripasudil groups than in the control. Topically applied ripasudil prolonged graft survival by downregulating neovascularization and inflammation factors, while promoting corneal re-epithelization, suggesting that ripasudil may be useful for suppressing immunological rejection in corneal transplantation.
Collapse
Affiliation(s)
- Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan. .,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Keiichi Fujimoto
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mikiko Okano
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshinari Funaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Jaemyoung Sung
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Naoko Negishi
- Atopy (Allergic) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Indoor Environment Neurophysiology Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Broniek G, Langwińska-Wośko E, Sybilska M, Szaflik JP, Przybylski M, Wróblewska M. Occurrence of viral DNA in paired samples of corneal rim and cornea preservation fluid. J Med Virol 2016; 89:732-736. [PMID: 27588373 DOI: 10.1002/jmv.24675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Abstract
Corneal transplants have one of the highest success rates among all transplantological procedures. Corneas intended for transplantation are stored in a preservation fluid, which is then tested for bacterial and fungal infections. Among all analyses of infectious complications following corneal transplants, infections caused by bacteria or fungi are the most prominent. Surprisingly, however, apart from a few publications, there is a lack of data regarding the occurrence of viruses in donor corneas and the risk of transmitting these to their recipients. The intention of this research was therefore to determine the frequency with which human herpesvirus 1 (HHV-1), human herpesvirus 2 (HHV-2), and human adenovirus (HAdV) occur in transplanted corneal tissue, as well as in samples of preservation fluid. The study comprised 57 paired samples, with each pair consisting of a fragment of the corneal tissue remaining after its trepanation for transplantation surgery and a sample of corneal preservation fluid. Sample pairs were all tested for the presence of the DNA of three viruses (HHV-1, HHV-2, and HAdV) using real time PCR technique. Viral DNA was found in three of the tested corneas-HHV-1 DNA in one paired sample (1.8%) and adenovirus DNA in two single samples (3.5%). We postulate that virological testing of corneas for transplantation should be considered, particularly in the case of donors with increased risk factors for herpesvirus and adenovirus reactivation. J. Med. Virol. 89:732-736, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- G Broniek
- SPKSO Ophthalmic University Hospital, Medical University of Warsaw, Warsaw, Poland
| | - E Langwińska-Wośko
- SPKSO Ophthalmic University Hospital, Medical University of Warsaw, Warsaw, Poland.,Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - M Sybilska
- SPKSO Ophthalmic University Hospital, Medical University of Warsaw, Warsaw, Poland
| | - J P Szaflik
- SPKSO Ophthalmic University Hospital, Medical University of Warsaw, Warsaw, Poland.,Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - M Przybylski
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - M Wróblewska
- SPKSO Ophthalmic University Hospital, Medical University of Warsaw, Warsaw, Poland.,Department of Dental Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Nguyen P, Rue K, Heur M, Yiu SC. Ocular surface rehabilitation: Application of human amniotic membrane in high-risk penetrating keratoplasties. Saudi J Ophthalmol 2014; 28:198-202. [PMID: 25278797 DOI: 10.1016/j.sjopt.2014.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/01/2014] [Accepted: 06/15/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Human amniotic membrane is a versatile tool for management of ocular surface disorders. This study evaluates the effect of cryopreserved human amniotic membrane (hAM) on one-year survival of penetrating keratoplasties (PKP) in high-risk recipients. METHOD This is a retrospective noncomparative cohort study of 58 consecutive eyes undergoing PKP with concurrent placement of a self-retained cryopreserved hAM (PROKERA®) at a tertiary care center from January 2009 to July 2010. RESULTS Mean patient age was 66.7 ± 17.2 years and 30 (54%) were males. 51 eyes were pseudophakic and one aphakic. 27 eyes were glaucomatous; 24 had glaucoma drainage device and 2 had previous endocyclophotocoagulation. 12 patients had PKP for the first time and 46 had repeat PKP (average number of prior PKP = 1.63 ± 1.1, range: 1-5). Risk factors for graft failure included repeat PKP (79.3%), corneal neovascularization (51.7%), preexisting glaucoma (46.6%), and presence of anterior synechiae (37.9%). Both First Transplant and Repeat Transplant groups had similar survival rates until 6 months after transplant (75% vs 74%, odds ratio = 1.06, p = 1.00). At 12 months, First Transplant group showed a better survival rate (67% vs 43%, odds ratio = 2.60, p = 0.20). Eyes with >3 risk factors had a higher graft failure rate (odds ratio = 5.81, p = 0.003). CONCLUSION Survey of the literature suggests that high-risk PKP with concurrent hAM placement demonstrate comparable graft survival. Presence of multiple risk factors is associated with poor survival.
Collapse
Affiliation(s)
- Pho Nguyen
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kelly Rue
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Martin Heur
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Samuel C Yiu
- Department of Ophthalmology, The Wilmer Eye Institute, The John Hopkins University, Baltimore, MD, USA
| |
Collapse
|
7
|
Yan F, Cai L, Hui Y, chen S, Meng H, Huang Z. Tolerogenic dendritic cells suppress murine corneal allograft rejection by modulating CD28/CTLA-4 expression on regulatory T cells. Cell Biol Int 2014; 38:835-48. [PMID: 24604878 DOI: 10.1002/cbin.10268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/21/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Feng Yan
- Department of Ophthalmology; Jinling Hospital; School of Medicine; Nanjing University; Nanjing 210002 China
- Department of Ophthalmology; Xijing Hospital; The Fourth Military Medical University; Xi'an China
| | - Li Cai
- Department of Ophthalmology; Xijing Hospital; The Fourth Military Medical University; Xi'an China
| | - Yannian Hui
- Department of Ophthalmology; Xijing Hospital; The Fourth Military Medical University; Xi'an China
| | - Suihua chen
- Department of Ophthalmology; Jinling Hospital; School of Medicine; Nanjing University; Nanjing 210002 China
| | - Hao Meng
- Department of Ophthalmology; Xijing Hospital; The Fourth Military Medical University; Xi'an China
- Department of Ophthalmology; NO.313 Hospital; Hulu Dao China
| | - Zhenping Huang
- Department of Ophthalmology; Jinling Hospital; School of Medicine; Nanjing University; Nanjing 210002 China
| |
Collapse
|