1
|
Nguyen DT, Pant J, Sapkota A, Goudie MJ, Singha P, Brisbois EJ, Handa H. Instant clot forming and antibacterial wound dressings: Achieving hemostasis in trauma injuries with S-nitroso-N-acetylpenicillamine-tranexamic acid-propolis formulation. J Biomed Mater Res A 2024; 112:1930-1940. [PMID: 38769626 DOI: 10.1002/jbm.a.37738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Wound infection and excessive blood loss are the two major challenges associated with trauma injuries that account for 10% of annual deaths in the United States. Nitric oxide (NO) is a gasotransmitter cell signaling molecule that plays a crucial role in the natural wound healing process due to its antibacterial, anti-inflammatory, cell proliferation, and tissue remodeling abilities. Tranexamic acid (TXA), a prothrombotic agent, has been used topically and systemically to control blood loss in reported cases of epistaxis and combat-related trauma injuries. Its properties could be incorporated in wound dressings to induce immediate clot formation, which is a key factor in controlling excessive blood loss. This study introduces a novel, instant clot-forming NO-releasing dressing, and fabricated using a strategic bi-layer configuration. The layer adjacent to the wound was designed with TXA suspended on a resinous bed of propolis, which is a natural bioadhesive possessing antibacterial and anti-inflammatory properties. The base layer, located furthest away from the wound, has an NO donor, S-nitroso-N-acetylpenicillamine (SNAP), embedded in a polymeric bed of Carbosil®, a copolymer of polycarbonate urethane and silicone. Propolis was integrated with a uniform layer of TXA in variable concentrations: 2.5, 5.0, and 7.5 vol % of propolis. This design of the TXA-SNAP-propolis (T-SP) wound dressing allows TXA to form a more stable clot by preventing the lysis of fibrin. The lactate dehydrogenase-based platelet adhesion assay showed an increase in fibrin activation with 7.5% T-SP as compared with control within the first 15 min of its application. A scanning electron microscope (SEM) confirmed the presence of a dense fibrin network stabilizing the clot for fabricated dressing. The antibacterial activity of NO and propolis resulted in a 98.9 ± 1% and 99.4 ± 1% reduction in the colony-forming unit of Staphylococcus aureus and multidrug-resistant Acinetobacter baumannii, respectively, which puts forward the fabricated dressing as an emergency first aid for traumatic injuries, preventing excessive blood loss and soil-borne infections.
Collapse
Affiliation(s)
- Dieu Thao Nguyen
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | - Jitendra Pant
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | - Aasma Sapkota
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | - Marcus James Goudie
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Manginstar CO, Tallei TE, Niode NJ, Salaki CL, Hessel SS. Therapeutic potential of propolis in alleviating inflammatory response and promoting wound healing in skin burn. Phytother Res 2024; 38:856-879. [PMID: 38084816 DOI: 10.1002/ptr.8092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/22/2023] [Accepted: 11/28/2023] [Indexed: 02/15/2024]
Abstract
Burns can cause inflammation and delayed healing, necessitating alternative therapies due to the limitations of conventional treatments. Propolis, a natural bee-produced substance, has shown promise in facilitating burn healing. This literature review provides a comprehensive overview of propolis' mechanisms of action, wound-healing properties, and its application in treating skin burns. Propolis contains bioactive compounds with antimicrobial, antioxidant, and anti-inflammatory properties, making it a promising candidate for managing skin burn injuries. It helps prevent infections, neutralize harmful free radicals, and promote a well-balanced inflammatory response. Moreover, propolis aids in wound closure, tissue regeneration, collagen synthesis, cellular proliferation, and angiogenesis, contributing to tissue regeneration and remodeling. The article discusses various propolis extracts, extraction methods, chemical composition, and optimized formulations like ointments and creams for burn wound treatment. Considerations regarding dosage and safety are addressed. Further research is needed to fully understand propolis' mechanisms, determine optimal formulations, and establish suitable clinical dosages. Nevertheless, propolis' natural origin and demonstrated benefits make it a compelling avenue for burn care exploration, potentially complementing existing therapies and improving burn management outcomes.
Collapse
Grants
- 158/E5/PG.02.00.PL/2023 Directorate of Research, Technology, and Community Engagement at the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia
- 1803/UN12.13/LT/2023 Directorate of Research, Technology, and Community Engagement at the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia
Collapse
Affiliation(s)
- Christian Oktavianus Manginstar
- Entomology Study Program, Postgraduate Program, Sam Ratulangi University, Manado, Indonesia
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Central General Hospital, Manado, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
- Department of Biology, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Central General Hospital, Manado, Indonesia
| | - Christina Leta Salaki
- Plant Protection Study Program, Faculty of Agriculture, Sam Ratulangi University, Manado, Indonesia
| | - Sofia Safitri Hessel
- Indonesia Biodiversity and Biogeography Research Institute (INABIG), Bandung, Indonesia
| |
Collapse
|
3
|
Alarjani KM, Yehia HM, Badr AN, Ali HS, Al-Masoud AH, Alhaqbani SM, Alkhatib SA, Rady AM. Anti-MRSA and Biological Activities of Propolis Concentrations Loaded to Chitosan Nanoemulsion for Pharmaceutics Applications. Pharmaceutics 2023; 15:2386. [PMID: 37896146 PMCID: PMC10610434 DOI: 10.3390/pharmaceutics15102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Propolis is a naturally occurring substance with beneficial properties; bees produce it from various plant sources, and it is an anti-inflammatory and therapeutic resinous substance. This study aimed to enhance the biological features of propolis extract by loading it onto active film. Firstly, extraction was performed using three solvent systems, and their total phenolic, flavonoid, and antioxidant activity was measured. Propolis ethanol extract (EEP) was evaluated for phenolic fraction content and then chosen to prepare a chitosan-loaded emulsion with several concentrations. The antibacterial, anti-mycotic, and anti-mycotoxigenic properties of the extract and nanoemulsion were assessed. PPE's cytotoxicity and nanoemulsion were evaluated using brine shrimp and cell line assays. Results indicate higher phenolic (322.57 ± 4.28 mg GAE/g DW), flavonoid (257.64 ± 5.27 mg QE/g DW), and antioxidant activity of the EEP. The phenolic fraction is distinguished by 18 phenolic acids with high p-hydroxybenzoic content (171.75 ± 1.64 µg/g) and 12 flavonoid compounds with high pinocembrin and quercetin content (695.91 ± 1.76 and 532.35 ± 1.88 µg/g, respectively). Phenolic acid derivatives (3,4-Dihydroxybenzaldehyde, 3,4-Dihydroxyphenol acetate, and di-methoxy cinnamic) are also found. Concentrations of 50, 100, 150, and 200 ng EEP loaded on chitosan nanoemulsion reflect significant antibacterial activity against pathogenic bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA) and toxigenic fungi, particularly Fusarium. Among the four EEP-loaded concentrations, the nanoemulsion with 150 ng showed outstanding features. Using a simulated medium, 150 and 200 ng of EEP-loaded chitosan nanoemulsion concentrations can stop zearalenone production in Fusarium media with complete fungi inhibition. Also, it reduced aflatoxins production in Aspergillus media, with fungal inhibition (up to 47.18%). These results recommended the EEP-chitosan application for pharmaceutics and medical use as a comprehensive wound healing agent.
Collapse
Affiliation(s)
- Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| | - Hany Mohamed Yehia
- Food Science and Nutrition Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Hatem Salma Ali
- Food Technology Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Abdulrahman Hamad Al-Masoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| | - Sarah Mubark Alhaqbani
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| | - Shahad Ahmed Alkhatib
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| | - Ahmed Moustafa Rady
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia (S.M.A.); (A.M.R.)
| |
Collapse
|
4
|
Luque-Bracho A, Rosales Y, Vergara-Buenaventura A. The benefits of propolis in periodontal therapy. A scoping review of preclinical and clinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115926. [PMID: 36400346 DOI: 10.1016/j.jep.2022.115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The treatment of periodontal disease (PD) is aimed at adequate control of bacterial plaque. In many patients mechanical methods are unable to eliminate this plaque leading to the need for adjuvant chemical products. Propolis is a natural product that has demonstrated therapeutic properties and has shown to be effective as an anti-inflammatory and antibacterial agent in dentistry. AIM OF THE STUDY Considering the beneficial effects of propolis on various oral conditions, this study aimed to review, update and summarize the available evidence on the benefits of propolis in in vitro studies, animal models, and human clinical trials on non-surgical periodontal therapy. MATERIALS AND METHODS An electronic search in three databases was performed up to December 2021. The search strategy included the terms "propolis" and "periodontal disease" to identify relevant studies on the potential advantages of propolis in periodontal therapy in in vitro studies, animal models, and human clinical trials. RESULTS The search yielded 538 results, discarding 459 studies that did not clearly meet the inclusion criteria. A total of 42 studies were included: 18 in vitro, one animal, and 23 randomized clinical trials. In vitro studies have demonstrated that propolis has antimicrobial activity against periodontal pathogens and clinical studies have reported its use as an adjunct to non-surgical periodontal therapy. The clinical effects of propolis have been reported in conjunction with prophylaxis, polishing, and scaling and root planing (SRP). It has shown to have anti-plaque activity and improve gingival health. Propolis was found to be more effective in improving clinical parameters than conventional treatment (SRP alone) and demonstrated similar efficacy in treating chronic periodontitis compared to positive controls. Only one study reported an allergic reaction. CONCLUSION The evidence available on the benefits of propolis in in vitro studies, animal models, and clinical trials suggests that propolis could be a promising adjunct to conventional therapy of gingivitis and periodontitis. However, further studies are needed to determine its superiority to other therapies in the treatment of PD.
Collapse
Affiliation(s)
- Angel Luque-Bracho
- Facultad de Ciencias de la Salud, Universidad Cientifica del Sur, Lima, Peru.
| | - Yasmin Rosales
- Facultad de Ciencias de la Salud, Universidad Cientifica del Sur, Lima, Peru.
| | | |
Collapse
|
5
|
Zulkefli N, Che Zahari CNM, Sayuti NH, Kamarudin AA, Saad N, Hamezah HS, Bunawan H, Baharum SN, Mediani A, Ahmed QU, Ismail AFH, Sarian MN. Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. Int J Mol Sci 2023; 24:ijms24054607. [PMID: 36902038 PMCID: PMC10003005 DOI: 10.3390/ijms24054607] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 03/02/2023] Open
Abstract
Wounds are considered to be a serious problem that affects the healthcare sector in many countries, primarily due to diabetes and obesity. Wounds become worse because of unhealthy lifestyles and habits. Wound healing is a complicated physiological process that is essential for restoring the epithelial barrier after an injury. Numerous studies have reported that flavonoids possess wound-healing properties due to their well-acclaimed anti-inflammatory, angiogenesis, re-epithelialization, and antioxidant effects. They have been shown to be able to act on the wound-healing process via expression of biomarkers respective to the pathways that mainly include Wnt/β-catenin, Hippo, Transforming Growth Factor-beta (TGF-β), Hedgehog, c-Jun N-Terminal Kinase (JNK), NF-E2-related factor 2/antioxidant responsive element (Nrf2/ARE), Nuclear Factor Kappa B (NF-κB), MAPK/ERK, Ras/Raf/MEK/ERK, phosphatidylinositol 3-kinase (PI3K)/Akt, Nitric oxide (NO) pathways, etc. Hence, we have compiled existing evidence on the manipulation of flavonoids towards achieving skin wound healing, together with current limitations and future perspectives in support of these polyphenolic compounds as safe wound-healing agents, in this review.
Collapse
Affiliation(s)
- Nabilah Zulkefli
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | | | - Nor Hafiza Sayuti
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ammar Akram Kamarudin
- UKM Molecular Biology Institute (UMBI), UKM Medical Center, Kuala Lumpur 56000, Selangor, Malaysia
| | - Norazalina Saad
- Laboratory of Cancer Research UPM-MAKNA (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Qamar Uddin Ahmed
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Ahmad Fahmi Harun Ismail
- Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
- Correspondence: (A.F.H.I.); (M.N.S.)
| | - Murni Nazira Sarian
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence: (A.F.H.I.); (M.N.S.)
| |
Collapse
|
6
|
Disinfectant effects of Brazilian green propolis alcohol solutions on the Staphylococcus aureus biofilm of maxillofacial prosthesis polymers. J Prosthet Dent 2022; 128:1405-1411. [PMID: 33992467 DOI: 10.1016/j.prosdent.2021.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/02/2023]
Abstract
STATEMENT OF PROBLEM Brazilian green propolis may be an alternative product that reduces the development of a microbial biofilm on the polymers used for maxillofacial prostheses. However, its effects as a disinfectant have not been fully established. PURPOSE The purpose of this in vitro study was to investigate the effects of Brazilian green propolis alcohol solutions against the Staphylococcus aureus biofilm on polymers used in maxillofacial prostheses, the maxillofacial silicone elastomer (MDX4-4210), and specific acrylic resins for ocular prostheses. MATERIAL AND METHODS A total of 324 disk-shaped specimens (3×10 mm) of each material were fabricated. All specimens were contaminated with S. aureus (108 cells/mL) to assess the antibiofilm activity of immersion solutions and protocols. Thus, 162 specimens of each material were randomly distributed and equally divided into 5 groups of disinfectants and 1 control group: 3 separate groups of 2.5%, 5%, and 10% propolis alcohol solutions, 1 group of 5% propolis alcohol gel, a positive control group of 2% chlorhexidine gluconate, and a negative control group of distilled water. Specimens (n=9) were disinfected by immersion for 5, 10, and 15 minutes and immersed in culture medium for 24 hours. Any notable turgescence in the final medium was considered indicative of a biofilm. The effects of disinfectants were analyzed by a turbidity assay and by scanning electron microscopy. Data were analyzed descriptively. RESULTS The final medium with specimens disinfected with 10% propolis alcohol solution showed no turbidity, indicating constant efficacy against the S. aureus biofilm. Similarly, these findings were observed in the 2% chlorhexidine gluconate group. Scanning electron microscopy images demonstrated that the surface of the polymers treated with 10% propolis alcohol solution did not show bacterial colonies. CONCLUSIONS Disinfection with 10% green propolis alcohol solution was effective in eliminating the S. aureus biofilm from specimens of maxillofacial elastomer and N1 acrylic resin specific to ocular prostheses by immersion for 5 minutes.
Collapse
|
7
|
Meral Kekecoglu, Sonmez E, Yalcin NE, Acar MK, Caprazli T. Analysis of Detailed Chemical and Bioactive Components of Yığılca Honeybee Propolis and Determination of Antioxidant Potential. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022050144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Pant K, Thakur M, Chopra HK, Dar BN, Nanda V. Assessment of fatty acids, amino acids, minerals, and thermal properties of bee propolis from Northern India using a multivariate approach. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Kasote D, Bankova V, Viljoen AM. Propolis: chemical diversity and challenges in quality control. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1887-1911. [PMID: 35645656 PMCID: PMC9128321 DOI: 10.1007/s11101-022-09816-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/08/2022] [Indexed: 05/09/2023]
Abstract
UNLABELLED Propolis is a resinous natural product produced by honeybees using beeswax and plant exudates. The chemical composition of propolis is highly complex, and varies with region and season. This inherent chemical variability presents several challenges to its standardisation and quality control. The present review was aimed at highlighting marker compounds for different types of propolis, produced by the species Apis mellifera, from different geographical origins and that display different biological activities, and to discuss strategies for quality control. Over 800 compounds have been reported in the different propolises such as temperate, tropical, birch, Mediterranean, and Pacific propolis; these mainly include alcohols, acids and their esters, benzofuranes, benzopyranes, chalcones, flavonoids and their esters, glycosides (flavonoid and diterpene), glycerol and its esters, lignans, phenylpropanoids, steroids, terpenes and terpenoids. Among these, flavonoids (> 140), terpenes and terpenoids (> 160) were major components. A broad range of biological activities, such as anti-oxidant, antimicrobial, anti-inflammatory, immunomodulatory, and anticancer activities, have been ascribed to propolis constituents, as well as the potential of these compounds to be biomarkers. Several analytical techniques, including non-separation and separation methods have been described in the literature for the quality control assessment of propolis. Mass spectrometry coupled with separation methods, followed by chemometric analysis of the data, was found to be a valuable tool for the profiling and classification of propolis samples, including (bio)marker identification. Due to the rampant chemotypic variability, a multiple-marker assessment strategy considering geographical and biological activity marker(s) with chemometric analysis may be a promising approach for propolis quality assessment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-022-09816-1.
Collapse
Affiliation(s)
- Deepak Kasote
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alvaro M. Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
- SAMRC Herbal Drugs Research Unit, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
| |
Collapse
|
10
|
Chang ZQ, Leong W, Chua LS. Statistical approach to reveal propolis as a potential biopreservative for fruit juices. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Saeed MA, Khabeer A, Faridi MA, Makhdoom G. Effectiveness of propolis in maintaining oral health: a scoping review. CANADIAN JOURNAL OF DENTAL HYGIENE : CJDH = JOURNAL CANADIEN DE L'HYGIENE DENTAIRE : JCHD 2021; 55:167-176. [PMID: 34925517 PMCID: PMC8641552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 06/14/2023]
Abstract
Background Research has revealed that periodontal diseases are caused by inflammation that results from a dysbiosis of the oral microbiome where oral bacteria multiply into larger communities referred to as dental biofilm. To help control this overgrowth of bacteria, a variety of toothpastes, dentifrices, and mouthwashes have been developed. Although not as common in North American toothpastes, propolis as an active ingredient in dentifrices has begun to emerge, as laboratory studies have suggested it has anti-inflammatory, immunomodulatory, antioxidant, antimicrobial, and antidiabetic properties. The purpose of this scoping review was to explore the literature on the effectiveness of propolis in maintaining oral health. Methods This review used the following criteria: Population: studies involving healthy humans; Intervention: propolis in the form of toothpaste, dentifrice, and mouthwash; Comparison: fluoride, chlorohexidine, and placebo; Outcomes: plaque and gingival indices, improvement in oral hygiene, and inhibition of bacteria. Relevant research articles were selected from Web of Science, PubMed, MEDLINE, and Scopus databases using the search parameter "propolis[tw] AND (toothpaste*[tw] OR dentifrice*[tw] OR mouthwash*[tw])". Only original articles published after 2009 and written in the English language were included. Results A total of 19 original papers met the criteria and showed varying levels of success achieved with the use of propolis. It was responsible for a significant lowering of specific plaque and gingival indices, inhibited the growth of bacteria, reduced oral flora diversity, and consistently improved periodontal condition, oral hygiene, and oral health. Conclusion Propolis may play a role in initiating, sustaining, and maintaining oral health as its desirable properties have the potential to improve various oral hygiene related indices.
Collapse
Affiliation(s)
| | - Abdul Khabeer
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Ali Faridi
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ghulam Makhdoom
- International Scholar, Periodontics, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
12
|
Godhi BS, Jaishankar HP, Darla HT, Saha S, Sumana M.N., Rudraswamy S. Indian Propolis Little Known and More to Explore for Dental Applications: A Review. JOURNAL OF ADVANCED ORAL RESEARCH 2021. [DOI: 10.1177/23202068211033742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aim: The present trend in health care is toward the use of natural products for curing diseases. “Propolis” or bees wax is a natural, nontoxic resinous material collected by bees from exudates and buds of the plant. It has many beneficial biological and pharmacological properties such as antimicrobial, anti-inflammatory, antifungal, antiviral, and anticancer activities. Propolis is widely applied in dentistry as an anticariogenic agent, hypersensitivity reducing agent, and endodontic disinfection to name a few. The diverse phytochemical constituents of propolis are responsible for its valuable properties. Considering its vast potential, propolis has gained the attention of many researchers. The aim of this study is to offer a comprehensive evidence which will enable the readers and researchers to appreciate the prospects of the application of Indian propolis in present-day dentistry. Material and Methods: In vitro and in vivo studies on Indian propolis and its application in dentistry searches were performed in PubMed, Scopus, and Cochrane library databases up to December 2020. Results: The search identified 31 records; 12 full-text articles which met the eligibility criteria were assessed. Based on the results of in vitro studies, further in vivo studies need to be carried out to prove the feasibility of Indian propolis as an anticariogenic agent, a desensitizing agent, and an intracanal irrigant/medicament in the field of dentistry. Conclusion: Indian propolis has shown an immense amount of potentiality which demands for more clinical research to have sufficient evidence-based literature for future usage in oral health care.
Collapse
Affiliation(s)
- Brinda Suhas Godhi
- Department of Pediatric and Preventive Dentistry, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - H. P. Jaishankar
- Department of Oral Medicine and Radiology, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - H. Tanishka Darla
- Department of Pediatric and Preventive Dentistry, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Sonali Saha
- Department of Pediatric and Preventive Dentistry, Sardar Patel Post Graduate Institute of Dental and Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sumana M.N.
- Department of Microbiology, JSS Medical College and Hospital, JSS Academy of Higher, Education and Research, Mysuru, Karnataka, India
| | - Sushma Rudraswamy
- Department of Public Health Dentistry, JSS Dental College & Hospital, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| |
Collapse
|
13
|
Wibowo I, Marlinda N, Nasution FR, Putra RE, Utami N, Indriani AD, Zain RS. Down-regulation of complement genes in lipopolysaccharide-challenged zebrafish (Danio rerio) larvae exposed to Indonesian propolis. BRAZ J BIOL 2021; 83:e245202. [PMID: 34378662 DOI: 10.1590/1519-6984.245202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/25/2021] [Indexed: 11/21/2022] Open
Abstract
Although propolis has been reported for having anti-inflammatory activities, its effects on complement system has not been much studied. This research was conducted to find out the effects of Indonesian propolis on the expression levels of C3, C1r/s, Bf, MBL, and C6 in zebrafish larvae which were induced by lipopolysaccharide (LPS). Counting of macrophages migrating to yolk sac and liver histology were carried out. Larvae were divided into four groups: CON (cultured in E3 medium only), LPS (cultured in a medium containing 0.5 μg/L LPS), LPSIBU (cultured in a medium containing LPS, and then treated with 100 μg/L ibuprofen for 24 hours), and LPSPRO (cultured in a medium containing LPS, and then immersed in 14,000 μg/L propolis for 24 hours) groups. The results showed that complement gene expression in larvae from the LPSIBU and LPSPRO groups were generally lower than in larvae from the LPS group. The number of macrophage migrations to the yolk in the LPSPRO group was also lower than in the LPS group. Histological structure of liver in all groups were considered normal. This study shows that Indonesian propolis has the potential to be used as an alternative to the substitution of NSAIDs.
Collapse
Affiliation(s)
- I Wibowo
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung, Indonesia
| | - N Marlinda
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung, Indonesia
| | - F R Nasution
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung, Indonesia
| | - R E Putra
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung, Indonesia
| | - N Utami
- Indonesian Institute of Sciences, Research Center for Biotechnology, Cibinong Science Center, Bogor, Indonesia
| | - A D Indriani
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung, Indonesia
| | - R S Zain
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung, Indonesia
| |
Collapse
|
14
|
Silva H, Francisco R, Saraiva A, Francisco S, Carrascosa C, Raposo A. The Cardiovascular Therapeutic Potential of Propolis-A Comprehensive Review. BIOLOGY 2021; 10:biology10010027. [PMID: 33406745 PMCID: PMC7823408 DOI: 10.3390/biology10010027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
Simple Summary Propolis, also described as bee glue, is a natural component made up of a resinous mixture of honeybee compounds from multiple botanical sources. The literature has demonstrated a variety of medicinal properties attributed to propolis due to its chemical complexity. However, the positive effects of propolis on cardiovascular health have gained little coverage. Therefore, we aimed to provide an accurate and up-to-date review of the main cardiovascular health benefits of propolis. In particular, we intend to establish the key varieties of propolis and pharmacological compounds with the therapeutic effects that are most encouraging, as well as the physiological processes by which those advantages are accomplished. The Brazilian green and red varieties reveal the greatest number of beneficial activities among the varieties of propolis studied. While much of the cardiovascular beneficial effects appear to derive from the cumulative actions of several compounds working via multiple signaling mechanisms, some individual compounds that may enhance the existing therapeutic arsenal have also shown significant results. It is also worth exploring the prospect of using propolis as food supplements. Abstract Owing to its chemical richness, propolis has a myriad of therapeutic properties. To the authors’ knowledge, this is the first comprehensive review paper on propolis to focus exclusively on its major effects for cardiovascular health. The propolis compound varieties with the most promising therapeutic benefits and their respective physiological mechanisms will be discussed. Propolis displays an anti-atherosclerotic activity, attained through modulation of the plasma lipid profile and through stabilization of the fatty plaque by inhibiting macrophage apoptosis, vascular smooth muscle proliferation and metalloproteinase activity. The antihypertensive effects of propolis probably arise through the combination of several mechanisms, including the suppression of catecholamine synthesis, stimulation of endothelium-dependent vasorelaxation and vascular anti-inflammatory activity. The anti-hemostatic activity of propolis is attributed to the inhibition of platelet plug formation and antifibrinolytic activity. By inhibiting the secretion of proangiogenic factors, propolis suppresses endothelial cell migration and tubulogenesis, exerting antiangiogenic activity. The antioxidant and anti-inflammatory activities are responsible for protection against vascular endothelial and cardiomyocyte dysfunction, mostly by the prevention of oxidative stress. Among the reviewed propolis varieties, the Brazilian green and red varieties show the largest number of beneficial activities. Further research, especially preclinical, should be conducted to assess the cardiovascular benefits of the given varieties with different compositions.
Collapse
Affiliation(s)
- Henrique Silva
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Correspondence: (H.S.); (A.R.)
| | - Rafaela Francisco
- Pharmacological Sciences Department, Faculty of Pharmacy, Universidade de Lisboa, Av Prof Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain; (A.S.); (C.C.)
| | - Simone Francisco
- Faculty of Medicine, Nutrition Lab—Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain; (A.S.); (C.C.)
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Correspondence: (H.S.); (A.R.)
| |
Collapse
|
15
|
Esposito C, Garzarella EU, Bocchino B, D'Avino M, Caruso G, Buonomo AR, Sacchi R, Galeotti F, Tenore GC, Zaccaria V, Daglia M. A standardized polyphenol mixture extracted from poplar-type propolis for remission of symptoms of uncomplicated upper respiratory tract infection (URTI): A monocentric, randomized, double-blind, placebo-controlled clinical trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153368. [PMID: 33091857 DOI: 10.1016/j.phymed.2020.153368] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The most common symptoms of mild upper respiratory tract infections (URTIs) are sore throat, muffled dysphonia, and swelling and redness of the throat, which result from the inflammation process following acute bacterial or viral infection. HYPOTHESIS/PURPOSE As propolis is a natural resinous substance traditionally used to maintain oral cavity and upper respiratory tract health due to its antimicrobial and anti-inflammatory properties, the aim of this study is to evaluate the efficacy of an oral spray based on poplar-type propolis extract with a known and standardized polyphenol content, on the remission of the symptoms associated with mild uncomplicated URTIs. STUDY DESIGN A monocentric, randomized, double-blind, placebo-controlled clinical trial was performed. METHODS This study was conducted in 122 healthy adults who had perceived mild upper respiratory tract infections. Participants, randomly assigned to receive either propolis oral spray (N = 58) or placebo (N = 64), underwent four visits (baseline = t0, after 3 days = t1 and after 5 days = t2 and after a follow-up of 15 days = t3) in an outpatient setting. Propolis oral spray total polyphenol content was 15 mg/ml. The dosage was 2-4 sprays three times/day (corresponding to 12-24 mg of polyphenols/day), for five days. The duration of the study was 8 weeks. RESULTS After 3 days of treatment, 83% of subjects treated with propolis oral spray had remission of symptoms, while 72% of subjects in the placebo group had at least one remaining symptom. After five days, all subjects had recovered from all symptoms. This means that resolution from mild uncomplicated URTIs took place two days earlier, instead of taking place in five days as recorded in the control group. There was no relationship between the ingestion of propolis oral spray or placebo and adverse reactions. CONCLUSION Propolis oral spray can be used to improve both bacterial and viral uncomplicated URTI symptoms in a smaller number of days without the use of pharmacological treatment, leading to a prompt symptom resolution.
Collapse
Affiliation(s)
- Cristina Esposito
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Emanuele Ugo Garzarella
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Bruno Bocchino
- Samnium Medical Soc. Cooperative, 82100 Benevento, Italy
| | - Maria D'Avino
- Department of Internal Medicine, Hospital Cardarelli, Via Antonio Cardarelli, 80131 Naples, Italy
| | - Giuseppe Caruso
- Department of Internal Medicine, Hospital Cardarelli, Via Antonio Cardarelli, 80131 Naples, Italy
| | - Antonio Riccardo Buonomo
- Department of Clinical Medicine and Surgery - Section of Infectious Diseases, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Roberto Sacchi
- Applied Statistic Unit, Department of Earth and Environmental Sciences, University of Pavia, viale Taramelli 24, 27100 Pavia, Italy
| | - Fabio Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41121 Modena, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | | | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
16
|
Kowacz M, Pollack GH. Propolis-induced exclusion of colloids: Possible new mechanism of biological action. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2020; 38:100307. [PMID: 32864353 PMCID: PMC7442903 DOI: 10.1016/j.colcom.2020.100307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Propolis is a natural product originating from life activity of honeybees. It exhibits wide range of biological properties applicable in medicine, the food industry, and cosmetics. Chemically, propolis is a complex and variable mixture with more than 300 identified biologically active components. Propolis's many health-promoting effects are attributed to different biochemical mechanisms, mediated by often-concerted actions of some of its many constituents. Propolis is considered safe and biocompatible. Yet due to its intrinsic complexity, standardization of propolis preparations for medical use as well as prediction of e.g. pathogen-specific interactions becomes a non-trivial task. In this work we demonstrate a new physical mechanism of propolis action, largely independent of specific nuances of propolis chemistry, which may underlie some of its biological actions. We show that propolis-bearing surfaces generate an extensive exclusion zone (EZ) water layer. EZ is an interfacial region of water capable of excluding solutes ranging from ions to microorganisms. Propolis-generated EZ may constitute an effective barrier, physically disabling the approach of various pathogens to the propolis-functionalized surfaces. We suggest possible implications of this new mechanism for propolis-based prevention of respiratory infections.
Collapse
Affiliation(s)
- Magdalena Kowacz
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195, United States
| | - Gerald H Pollack
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195, United States
| |
Collapse
|
17
|
Brodkiewicz IY, Reynoso MA, Vera NR. In vivo evaluation of pharmacological properties of Argentine stingless bee geopropolis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00058-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Background
Propolis is a natural product that has been widely utilized as medicine and dietary supplement because of its broad biological activities. However, although meliponide hive products have many advantages, meliponiculture has not yet become popular in Argentina, and few scientific studies on its chemical composition and/or its bioactive properties were reported, so the use of stingless bee propolis Argentine in popular medicine continues to be based on empirical knowledge.
Our work aims to evaluate in vivo anti-inflammatory, antitussive and expectorant activities, and acute toxicity of the Argentine geopropolis ethanol extracts of two stingless bee’s species, Scaptotrigona jujuyensis Schrottky and Tetragonisca fiebrigi Schwarz. Wistar male rats were used for all in vivo studies. Anti-inflammatory activities were evaluated through carrageenan-induced edema and cotton pellet-induced granuloma formation. Antitussive activity was assessed against ammonia-induced cough. Expectorant activity was measured by volume of phenol red in the rats’ tracheas. The extract doses tested were 125, 250, 500, and 1000 mg/kg (p.o.). The safety was evaluated with test of acute toxicity (48 h).
Results
The results showed that S. jujuyensis and T. fiebrigi propolis (1000 mg/kg) significantly reduced the carrageenan-induced edema and cotton pellet-induced granuloma formation 3 h post-dosing. In the ammonia liquor-induced cough, both propolis significantly enhanced the latent period and reduced cough frequency as compared with those of the negative control. However, they did not increase the expulsion of red phenol in the treated rats.
Conclusions
This study shows that ethanol extracts of S. jujuyensis and T. fiebrigi propolis have anti-inflammatory and antitussive effects. These findings would justify the use of geopropolis in medicine as a potential phytotherapeutic product.
Graphical abstract
Collapse
|
18
|
Lessons from Exploring Chemical Space and Chemical Diversity of Propolis Components. Int J Mol Sci 2020; 21:ijms21144988. [PMID: 32679731 PMCID: PMC7404124 DOI: 10.3390/ijms21144988] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Propolis is a natural resinous material produced by bees and has been used in folk medicines since ancient times. Due to it possessing a broad spectrum of biological activities, it has gained significant scientific and commercial interest over the last two decades. As a result of searching 122 publications reported up to the end of 2019, we assembled a unique compound database consisting of 578 components isolated from both honey bee propolis and stingless bee propolis, and analyzed the chemical space and chemical diversity of these compounds. The results demonstrated that both honey bee propolis and stingless bee propolis are valuable sources for pharmaceutical and nutraceutical development.
Collapse
|
19
|
Novel Bi-Factorial Strategy against Candida albicans Viability Using Carnosic Acid and Propolis: Synergistic Antifungal Action. Microorganisms 2020; 8:microorganisms8050749. [PMID: 32429493 PMCID: PMC7284847 DOI: 10.3390/microorganisms8050749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022] Open
Abstract
The potential fungicidal action of the natural extracts, carnosic acid (obtained from rosemary) and propolis (from honeybees’ panels) against the highly prevalent yeast Candida albicans, used herein as an archetype of pathogenic fungi, was tested. The separate addition of carnosic acid and propolis on exponential cultures of the standard SC5314 C. albicans strain caused a moderate degree of cell death at relatively high concentrations. However, the combination of both extracts, especially in a 1:4 ratio, induced a potent synergistic pattern, leading to a drastic reduction in cell survival even at much lower concentrations. The result of a mathematical analysis by isobologram was consistent with synergistic action of the combined extracts rather than a merely additive effect. In turn, the capacity of SC5314 cells to form in vitro biofilms was also impaired by the simultaneous presence of both agents, supporting the potential application of carnosic acid and propolis mixtures in the prevention and treatment of clinical infections as an alternative to antibiotics and other antifungal agents endowed with reduced toxic side effects.
Collapse
|
20
|
Natsir R, Usman AN, Ardyansyah BD, Fendi F. Propolis and honey trigona decrease leptin levels of central obesity patients. ENFERMERIA CLINICA 2020. [DOI: 10.1016/j.enfcli.2019.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Pavlovic R, Borgonovo G, Leoni V, Giupponi L, Ceciliani G, Sala S, Bassoli A, Giorgi A. Effectiveness of Different Analytical Methods for the Characterization of Propolis: A Case of Study in Northern Italy. Molecules 2020; 25:molecules25030504. [PMID: 31979422 PMCID: PMC7037370 DOI: 10.3390/molecules25030504] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/16/2022] Open
Abstract
Propolis is used as folk medicine due to its spectrum of alleged biological and pharmaceutical properties and it is a complex matrix not still totally characterized. Two batches of propolis coming from two different environments (plains of Po Valley and the hilly Ligurian–Piedmont Apennines) of Northern Italy were characterized using different analytical methods: Spectrophotometric analysis of phenols, flavones and flavonols, and DPPH radical scavenging activity, HPLC, NMR, HSPME and GC–MS and HPLC–MS Orbitrap. Balsam and moisture content were also considered. No statistical differences were found at the spectrophotometric analysis; balsam content did not vary significantly. The most interesting findings were in the VOCs composition, with the Po Valley samples containing compounds of the resins from leaf buds of Populus nigra L. The hills (Appennines) samples were indeed characterize by the presence of phenolic glycerides already found in mountain environments. HPLC–Q-Exactive-Orbitrap®–MS analysis is crucial in appropriate recognition of evaluate number of metabolites, but also NMR itself could give more detailed information especially when isomeric compounds should be identified. It is necessary a standardized evaluation to protect and valorize this production and more research on propolis characterization using different analytical techniques.
Collapse
Affiliation(s)
- Radmila Pavlovic
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048 Edolo (BS), Italy; (R.P.); (G.B.); (V.L.); (G.C.); (S.S.); (A.B.); (A.G.)
| | - Gigliola Borgonovo
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048 Edolo (BS), Italy; (R.P.); (G.B.); (V.L.); (G.C.); (S.S.); (A.B.); (A.G.)
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Valeria Leoni
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048 Edolo (BS), Italy; (R.P.); (G.B.); (V.L.); (G.C.); (S.S.); (A.B.); (A.G.)
| | - Luca Giupponi
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048 Edolo (BS), Italy; (R.P.); (G.B.); (V.L.); (G.C.); (S.S.); (A.B.); (A.G.)
- Correspondence:
| | - Giulia Ceciliani
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048 Edolo (BS), Italy; (R.P.); (G.B.); (V.L.); (G.C.); (S.S.); (A.B.); (A.G.)
| | - Stefano Sala
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048 Edolo (BS), Italy; (R.P.); (G.B.); (V.L.); (G.C.); (S.S.); (A.B.); (A.G.)
| | - Angela Bassoli
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048 Edolo (BS), Italy; (R.P.); (G.B.); (V.L.); (G.C.); (S.S.); (A.B.); (A.G.)
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Annamaria Giorgi
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048 Edolo (BS), Italy; (R.P.); (G.B.); (V.L.); (G.C.); (S.S.); (A.B.); (A.G.)
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
22
|
Silva JB, Paiva KA, Costa KM, Viana GA, Araújo Júnior HN, Bezerra LS, Freitas CI, Batista JS. Hepatoprotective and antineoplastic potencial of red propolis produced by the bees Apis mellifera in the semiarid of Rio Grande do Norte, Brazil. PESQUISA VETERINARIA BRASILEIRA 2019. [DOI: 10.1590/1678-5150-pvb-6214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ABSTRACT: The objective of this study was to evaluate the hepatoprotective effect of the honey bee Apis mellifera ethanolic extract of the red propolis, obtained in four municipalities of the Rio Grande do Norte semi-arid region, through an in vitro evaluation of the antineoplastic potential in human hepatic carcinoma (HepG2) and normal cell lines (L929), and from the comet assay in hepatic cell lines (ZF-L hepatocytes) to evaluate the genoprotective potential of the extract. The hepatoprotective effect was also evaluated in vivo by the induction of chronic experimental hepatic lesions in rodents (Rattus norvegicus Berkenhout, 1769), Wistar line, by intraperitoneal administration of thioacetamide (TAA) at the dose of 0.2g/kg. The animals were distributed in the following experimental groups: G1 (control), G2 (treated with 500mg/kg ethanolic extract of propolis), G3 (treated with 500mg/kg of ethanolic extract and TAA) and G4 (treated with TAA). All rats were submitted to serum biochemical, macroscopic, histological and stereological biochemical exams of the liver. It was verified the genoprotective effect of red propolis since the mean damages promoted to DNA in cells tested with the extract were significantly lower than the mean of the positive control damage (hydrogen peroxide). The red propolis extract did not present cytotoxic activity to the tumor cells of human liver cancer, as well as to normal ones. The absence of cytotoxicity in normal cells may indicate safety in the use of the propolis extract. The results of the serum biochemical evaluation showed that the serum levels of the aminotransferase enzymes (AST) did not differ significantly between G1, G2 and G3 when compared to each other. G4 showed significant increase in levels compared to the other groups, indicating that the administration of the extract did not cause liver toxicity, as well as exerted hepatoprotective effect against the hepatic damage induced by TAA. The G3 and G4 animals developed cirrhosis, but in G3 the livers were characterized by the presence of small regenerative nodules and level with the surface of the organ, whereas in G4 the livers showed large regenerative nodules. The livers of the G1 and G2 animals presented normal histological appearance, whereas the livers of the G3 animals showed regenerative nodules surrounded by thin septa of connective tissue, and in G4 the regenerative nodules were surrounded by thick septa fibrous connective tissue. The analysis of the hepatic tissues by means of stereology showed that there was no statistical difference between the percentage of hepatocytes, sinusoids, and collagens in G1 and G2. In G3 the percentage of hepatocytes, sinusoids, and collagen did not differ significantly from the other groups. It was concluded that the ethanolic extract of the red propolis exerted a hepatoprotective effect, because it promoted in vitro reduction of the damage to the DNA of liver cells, antineoplastic activity in human hepatocellular carcinoma cell line (HepG2) and did not exert cytotoxic effect in normal cells or was able to reduce liver enzyme activity and the severity of cirrhosis induced by TAA in vivo.
Collapse
|
23
|
Khoshnevisan K, Maleki H, Samadian H, Doostan M, Khorramizadeh MR. Antibacterial and antioxidant assessment of cellulose acetate/polycaprolactone nanofibrous mats impregnated with propolis. Int J Biol Macromol 2019; 140:1260-1268. [PMID: 31472212 DOI: 10.1016/j.ijbiomac.2019.08.207] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/29/2022]
Abstract
Cellulose acetate (CA) electrospun nanofibers are one of the most practical cellulosic material which normally applied as carriers for drug delivery and wound healing systems. In this study, CA and polycaprolactone (PCL) was applied to fabricate the electrospun nanofibrous for wound dressing application. Propolis is a resin-like macromolecule produced by honeybees from the buds and diverse plants. Among many applications of this macromolecule, it has been occasionally employed directly to the skin for wound healing applications. Herein, owing to the significance of propolis, CA/PCL nanofibers were impregnated with a propolis-extracted solution to reach antibacterial and antioxidant mat. The scanning electron microscopy (SEM) images revealed that electrospinning of 10% (w/w) CA along with 14% (w/w) PCL produced excellent nanofibers compared to the resultant nanofibers. Hydrophobicity/hydrophilicity nature of CA/PCL mats was measured using water contact-angle method before and after treatment with NaOH. The nanofibrous mats exhibited a high water absorption capacity of about 400%. Antioxidant effect was measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay and propolis-CA/PCL presented a high antioxidant activity. Additionally, propolis-CA/PCL mats showed antibacterial activity against both the Gram-positive and Gram-negative bacteria. In conclusion, our results have confirmed that the propolis-impregnated CA/PCL mats have provided an appropriate surface for wound healing system.
Collapse
Affiliation(s)
- Kamyar Khoshnevisan
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Maleki
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Samadian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Doostan
- Department of Medical Nanotechnology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Silva CCFD, Salatino A, Motta LBD, Negri G, Salatino MLF. Chemical characterization, antioxidant and anti-HIV activities of a Brazilian propolis from Ceará state. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
25
|
González M, García ME, Slanis A, Bonini A, Fiedler S, Fariña L, Dellacassa E, Condurso C, Lorenzo D, Russo M, Tereschuk ML. Phytochemical Findings Evidencing Botanical Origin of New Propolis Type from North-West Argentina. Chem Biodivers 2019; 16:e1800442. [PMID: 30725525 DOI: 10.1002/cbdv.201800442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022]
Abstract
Propolis samples from north-west Argentina (Amaicha del Valle, Tucumán) were evaluated by palynology, FT-IR spectra, and RP-HPTLC. In addition, the volatile fraction was studied by HS-SPME-GC/MS. The botanical species most visited by Apis mellifera L. near the apiaries were collected and their RP-HPTLC extracts profiles were compared with propolis samples. In addition, GC/MS was performed for volatile compounds from Zuccagnia punctata Cav. (Fabaceae). FT-IR spectra and RP-HPTLC fingerprints of propolis samples showed similar profiles. In RP-HPTLC analyses, only Z. punctata presented a similar fingerprint to Amaicha propolis. The major volatile compounds present in both were trans-linalool oxide (furanoid), 6-camphenone, linalool, trans-pinocarveol, p-cymen-8-ol, and 2,3,6-trimethylbenzaldehyde. Potential variations for the Amaicha del Valle propolis volatile fraction as consequence of propolis sample preparation were demonstrated.
Collapse
Affiliation(s)
- Mariela González
- Departamento de Ingeniería de Procesos y Gestión Industrial, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, San Miguel de Tucumán, 4000, República Argentina
| | - María E García
- Laboratorio de Palinología, Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, 4000, República Argentina
| | - Alberto Slanis
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Miguel Lillo 250, San Miguel de Tucumán, 4000, República Argentina
| | - Ana Bonini
- Laboratorio de Biotecnología de Aromas, Facultad de Química, UdelaR, Gral. Flores 2124, 11800-, Montevideo, Uruguay
| | - Stephanie Fiedler
- Laboratorio de Biotecnología de Aromas, Facultad de Química, UdelaR, Gral. Flores 2124, 11800-, Montevideo, Uruguay
| | - Laura Fariña
- Laboratorio de Biotecnología de Aromas, Facultad de Química, UdelaR, Gral. Flores 2124, 11800-, Montevideo, Uruguay
| | - Eduardo Dellacassa
- Laboratorio de Biotecnología de Aromas, Facultad de Química, UdelaR, Gral. Flores 2124, 11800-, Montevideo, Uruguay
| | - Concetta Condurso
- Universitá di Messina, Viale Stagno d'Alcontres, 98166, Messina, Italy
| | - Daniel Lorenzo
- Laboratorio de Biotecnología de Aromas, Facultad de Química, UdelaR, Gral. Flores 2124, 11800-, Montevideo, Uruguay
| | - Marcos Russo
- Estación Experimental Agroindustrial Obispo Colombres, Av. William Cross 3150, San Miguel de Tucumán, T4101XAC, República Argentina
| | - María L Tereschuk
- Departamento de Ingeniería de Procesos y Gestión Industrial, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, San Miguel de Tucumán, 4000, República Argentina
| |
Collapse
|
26
|
Investigation of the anti-TB potential of selected propolis constituents using a molecular docking approach. Sci Rep 2018; 8:12238. [PMID: 30116003 PMCID: PMC6095843 DOI: 10.1038/s41598-018-30209-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
Human tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading bacterial killer disease worldwide and new anti-TB drugs are urgently needed. Natural remedies have long played an important role in medicine and continue to provide some inspiring templates for drug design. Propolis, a substance naturally-produced by bees upon collection of plant resins, is used in folk medicine for its beneficial anti-TB activity. In this study, we used a molecular docking approach to investigate the interactions between selected propolis constituents and four ‘druggable’ proteins involved in vital physiological functions in M. tuberculosis, namely MtPanK, MtDprE1, MtPknB and MtKasA. The docking score for ligands towards each protein was calculated to estimate the binding free energy, with the best docking score (lowest energy value) indicating the highest predicted ligand/protein affinity. Specific interactions were also explored to understand the nature of intermolecular bonds between the most active ligands and the protein binding site residues. The lignan (+)-sesamin displayed the best docking score towards MtDprE1 (−10.7 kcal/mol) while the prenylated flavonoid isonymphaeol D docked strongly with MtKasA (−9.7 kcal/mol). Both compounds showed docking scores superior to the control inhibitors and represent potentially interesting scaffolds for further in vitro biological evaluation and anti-TB drug design.
Collapse
|
27
|
Kuo CC, Wang RH, Wang HH, Li CH. Meta-analysis of randomized controlled trials of the efficacy of propolis mouthwash in cancer therapy-induced oral mucositis. Support Care Cancer 2018; 26:4001-4009. [DOI: 10.1007/s00520-018-4344-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/06/2018] [Indexed: 11/24/2022]
|
28
|
Flavonoid Extract from Propolis Inhibits Cardiac Fibrosis Triggered by Myocardial Infarction through Upregulation of SIRT1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4957573. [PMID: 30050588 PMCID: PMC6040284 DOI: 10.1155/2018/4957573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/15/2018] [Accepted: 05/03/2018] [Indexed: 12/22/2022]
Abstract
The flavonoid extract from propolis (FP) has been shown to protect against heart injury induced by isoproterenol. However, the effect of FP on cardiac fibrosis after myocardial infarction (MI) as well as the underlying mechanisms is not known. In the present study, we used biochemical and histological approaches to examine the effects of FP on MI-induced cardiac fibrosis and the related mechanisms in a rat MI model and in angiotensin II- (Ang II-) treated rat cardiac fibroblasts (CFs). In vivo, MI was generated by ligation of the left anterior descending coronary artery of rats, which remained for 4 weeks. Rats were randomly divided into the sham, MI, FP (12.5 mg/kg/d), and MI+FP groups. We found that FP treatment improved heart function, reduced cardiac fibrosis, and downregulated the expression of fibrosis-related factors including collagen I, collagen III, matrix metalloproteinase-2 (MMP-2), MMP-9, transforming growth factor-β1 (TGF-β1), and p-Smad2/3, which coincided with the upregulated expression of silent information regulator 1 (SIRT1) in the hearts of MI rats. Our in vitro experiments showed that FP inhibited the proliferation and migration of primary cultured rat CFs and downregulated the expression of the above-mentioned fibrosis-related factors in Ang II-stimulated CFs. In addition, FP can decrease ROS production induced by MI and Ang II in vivo and vitro. Notably, silencing SIRT1 counteracted the FP-induced effects on CFs treated with Ang II. We conclude that FP inhibits MI-induced cardiac fibrosis through SIRT1 activation and that FP represents a potential promising drug for the treatment of MI patients in the clinic.
Collapse
|
29
|
Propolis and Its Potential to Treat Gastrointestinal Disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2035820. [PMID: 29736177 PMCID: PMC5875067 DOI: 10.1155/2018/2035820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022]
Abstract
There are a number of disorders that affect the gastrointestinal tract. Such disorders have become a global emerging disease with a high incidence and prevalence rates worldwide. Inflammatory and ulcerative processes of the stomach or intestines, such as gastritis, ulcers, colitis, and mucositis, afflict a significant proportion of people throughout the world. The role of herbal-derived medicines has been extensively explored in order to develop new effective and safe strategies to improve the available gastrointestinal therapies that are currently used in the clinical practice. Studies on the efficacy of propolis (a unique resinous aromatic substance produced by honeybees from different types of species of plants) are promising and propolis has been effective in the treatment of several pathological conditions. This review, therefore, summarizes and critiques the contents of some relevant published scientific papers (including those related to clinical trials) in order to demonstrate the therapeutic value of propolis and its active compounds in the treatment and prevention of gastrointestinal diseases.
Collapse
|
30
|
Oryan A, Alemzadeh E, Moshiri A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed Pharmacother 2017; 98:469-483. [PMID: 29287194 DOI: 10.1016/j.biopha.2017.12.069] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
Propolis is a resinous mixture that honey bees collect from the tree buds, sap flows, or other botanical sources. The chemical composition of propolis varies and depends on the geographical area, time of collection, seasonality, illumination, altitude, and food availability during propolis exploitation. The goal of this review is to discuss important concepts including mechanisms of action and therapeutic activities of propolis. The PubMed, ScienceDirect, and Cochrane Library databases were searched for the literature published from January the 1st 2000 to October the 1st 2017. Sixteen animals and three clinical studies were included. A quantitative and qualitative review was performed on the clinical trials and the animal studies were comprehensively overviewed. In this study, the clinical trials have been combined and the results were provided as meta-analysis. Propolis is a non-toxic natural product; however some cases of allergy and contact dermatitis to this compound have been described mainly among beekeepers. An important factor in impaired wound healing is biofilm formation; propolis as an anti-microbial agent can reduce biofilm generation and result in accelerated healing processes. Most of the in vivo studies on various wound models suggested the beneficial roles of propolis on experimental wound healing and this has also been approved in the clinical trial studies. However, there is a lack of information concerning, dose, side effects and clinical effectiveness of propolis on wounds. As the effectiveness of propolis between different products is variable, more characterizations should be done and future investigations comparing different propolis based products and characterization of their specific roles on different models of wounds are highly appreciated.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Esmat Alemzadeh
- Department of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Moshiri
- Department of Surgery and Radiology, Dr. Moshiri Veterinary Clinic, Tehran, Iran
| |
Collapse
|
31
|
Kapare H, Lohidasan S, Sinnathambi A, Mahadik K. Standardization, anti-carcinogenic potential and biosafety of Indian propolis. J Ayurveda Integr Med 2017; 10:81-87. [PMID: 29217339 PMCID: PMC6598798 DOI: 10.1016/j.jaim.2017.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/19/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
Background Propolis from apiculture is known for wide range of medicinal properties owing to its vast chemical constituents including polyphenols, flavonoids and anticancer agent Caffeic acid phenethyl ester (CAPE). Objectives The objective of the study was to extract and standardize Indian propolis (IP) with respect to selected markers by newly developed High performance liquid chromatography (HPLC) method, to evaluate in vitro and in vivo anticancer activity and biosafety of Indian propolis. Materials and methods IP was extracted, optimized and standardized using a newly developed and validated HPLC method for simultaneous estimation of caffeic acid, apigenin, quercetin and CAPE. The standardised ethanolic extract of IP (EEIP) was screened for in vitro cytotoxicity using sulforhodamine B (SRB) assay, in vivo anti-carcinogenic effect against Dalton’s Lymphoma ascites (DLA) cells, hemolytic effect and pesticide analysis. Results The EEIP was found to contain more amount of total flavonoids (23.61 ± 0.0452 mg equivalent of quercetin/g), total polyphenolics (34.82 ± 0.0785 mg equivalent of gallic acid/g) and all selected markers except caffeic acid compared to all other extracts. EEIP showed better anti-cancer potential than CAPE on MCF-7 and HT-29 cell line and significant (p < 0.01) in vivo anti-carcinogenic effects against DLA in comparison with 5-fluorouracil. EEIP was found to be non-hemolytic. Conclusion From in vitro cytotoxicity, in vivo anti-carcinogenicity and biosafety studies it can be concluded that the standardized EEIP is safe and can be considered for further development as a biomedicine.
Collapse
Affiliation(s)
- Harshad Kapare
- Department of Quality Assurance Techniques, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune 411038, India
| | - Sathiyanarayanan Lohidasan
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune 411038, India.
| | - Arulmozhi Sinnathambi
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune 411038, India
| | - Kakasaheb Mahadik
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune 411038, India
| |
Collapse
|
32
|
Alvarez-Suarez JM. The Chemical and Biological Properties of Propolis. BEE PRODUCTS - CHEMICAL AND BIOLOGICAL PROPERTIES 2017. [PMCID: PMC7123330 DOI: 10.1007/978-3-319-59689-1_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Kustiawan PM, Lirdprapamongkol K, Palaga T, Puthong S, Phuwapraisirisan P, Svasti J, Chanchao C. Molecular mechanism of cardol, isolated from Trigona incisa stingless bee propolis, induced apoptosis in the SW620 human colorectal cancer cell line. BMC Pharmacol Toxicol 2017; 18:32. [PMID: 28472978 PMCID: PMC5418687 DOI: 10.1186/s40360-017-0139-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 04/27/2017] [Indexed: 11/10/2022] Open
Abstract
Background Cardol is a major bioactive constituent in the Trigona incisa propolis from Indonesia, with a strong in vitro antiproliferative activity against the SW620 colorectal adenocarcinoma cell line (IC50 of 4.51 ± 0.76 μg/mL). Cardol induced G0/G1 cell cycle arrest and apoptotic cell death. The present study was designed to reveal the mechanism of cardol’s antiproliferative effect and induction of apoptosis. Methods Changes in cell morphology were observed by light microscopy. To determine whether the mitochondrial apoptotic pathway was involved in cell death, caspase-3 and caspase-9 activities, western blot analysis, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) levels were assayed. Results Changes in the cell morphology and the significantly increased caspase-3 and caspase-9 activities, plus the cleavage of pro-caspase-3, pro-caspase-9 and PARP, supported that cardol caused apoptosis in SW620 cells within 2 h after treatment by cardol. In addition, cardol decreased the mitochondrial membrane potential while increasing the intracellular ROS levels in a time- and dose-dependent manner. Antioxidant treatment supported that the cardol-induced cell death was dependent on ROS production. Conclusion Cardol induced cell death in SW620 cells was mediated by oxidative stress elevation and the mitochondrial apoptotic pathway, and these could be the potential molecular mechanism for the antiproliferative effect of cardol.
Collapse
Affiliation(s)
- Paula Mariana Kustiawan
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Kriengsak Lirdprapamongkol
- Laboratory of Biochemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Bangkok, 10210, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Songchan Puthong
- Institute Biotechnology and Genetic Engineering, Chulalongkorn University, 254, Phayathai Road, Bangkok, 10330, Thailand
| | - Preecha Phuwapraisirisan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Bangkok, 10210, Thailand
| | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
34
|
Sung SH, Choi GH, Lee NW, Shin BC. External Use of Propolis for Oral, Skin, and Genital Diseases: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:8025752. [PMID: 28265293 PMCID: PMC5317107 DOI: 10.1155/2017/8025752] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/08/2016] [Indexed: 11/21/2022]
Abstract
Objective. The aim of this review is to provide the available evidence on the external use of propolis (EUP) for oral, skin, and genital diseases. Method. We searched twelve electronic databases for relevant studies up to June 2016. Randomized clinical trials (RCTs) were included and analysed. Results. Of the 286 articles identified, twelve potentially relevant studies met our inclusion criteria. A meta-analysis of two studies on recurrent oral aphthae (ROA) indicated that there were no significant differences in total effective rate (TER) for pain disappearance between EUP and placebo groups (RR = 1.96, 95% CI = 0.97-3.98, and P = 0.06). In two studies on skin diseases, the combined treatment of EUP with other interventions revealed significant effects on the duration of treatment or TER. In one study on genital diseases, EUP showed significant differences in genital herpes outcome measures compared to placebo. Conclusions. Our results on the effectiveness of EUP for treating oral, skin, and genital diseases are not conclusive because of the low methodological qualities and small sample sizes. Further well-designed randomized controlled trials, with high quality and large samples for specific disorders, must be conducted to obtain firm conclusions.
Collapse
Affiliation(s)
- Soo-Hyun Sung
- Department of Policy Development, National Development Institute of Korean Medicine, Seoul 04554, Republic of Korea
| | - Gwang-Ho Choi
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Nam-Woo Lee
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byung-Cheul Shin
- Division of Clinical Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
35
|
Oral Health of Patients Treated with Acrylic Partial Dentures Using a Toothpaste Containing Bee Product. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4034179. [PMID: 28265291 PMCID: PMC5317110 DOI: 10.1155/2017/4034179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
Abstract
This study was carried out to investigate the influence of a propolis and tee tree oil-containing hygienic agent on selected oral health parameters, oral microflora, and the condition of periodontal health. Thirty-seven patients who underwent oral rehabilitation with a removable acrylic denture were selected and randomly assigned into two groups: study group (A) which received a newly formulated propolis and tee tree oil-containing toothpaste or a control group (C) without an active ingredient. API, S-OHI, and mSBI were assessed in three subsequent stages. During each examination swabs were employed for microbiological inoculation: in the study group after 4 weeks use of the active toothpaste showed a decrease in the number of isolated microorganisms. In the control group, after 4 weeks use of the toothpaste without active ingredients resulted in increase in the number of the isolated microorganisms. Improvements in hygiene and the condition of periodontium were observed in patients using active toothpastes. In the study group the oral flora diversity was reduced by the decrease in the number of cultured microorganism species, while in the control group an increase in the number of cultured microorganisms and their species was observed.
Collapse
|
36
|
The Influence of Ethanolic Extract of Brazilian Green Propolis Gel on Hygiene and Oral Microbiota in Patients after Mandible Fractures. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9190814. [PMID: 27595110 PMCID: PMC4995337 DOI: 10.1155/2016/9190814] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/03/2016] [Accepted: 07/11/2016] [Indexed: 11/23/2022]
Abstract
Maintenance of proper oral hygiene by dental plaque elimination is one of the most important factors affecting the healing process in postoperative oral wounds. Propolis is a substance produced by bees. Ethanolic extract of propolis has bactericidal, fungicidal, anti-inflammatory, and antioxidative properties. Moreover, it can scavenge free radicals. The purpose of this paper is to demonstrate the efficacy of a gel containing 3% of ethanolic extract of Brazilian green propolis (EEP-B) when used for maintaining oral hygiene in patients with postoperative oral mucosal wounds. The hygiene was assessed using API, OHI, and SBI followed by microbiological examinations. The patients were divided into two groups. Group 1 consisted of those who used a gel containing EEP-B for oral hygiene, and group 2 consisted of those who used a gel without EEP-B. Although improved oral hygiene was noted in both groups, the improvement was markedly greater in the group using gel containing EEP-B. Summing up the results of microbiological examinations, EEP-B has beneficial effect on mouth microflora in postoperative period. Propolis preparations used for oral hygiene allow eliminating microorganisms of pathogenic character and physiological flora microorganisms considered as being opportunistic, with no harmful influence on physiological microflora in oral ecosystem.
Collapse
|
37
|
Popovska M, Fidovski J, Mindova S, Dirjanska K, Ristoska S, Stefanovska E, Radojkova-Nikolovska V, Mitic K, Rusevska B. The Effects of NBF Gingival Gel Application in the Treatment of the Erosive Lichen Planus: Case Report. Open Access Maced J Med Sci 2016; 4:158-63. [PMID: 27275352 PMCID: PMC4884239 DOI: 10.3889/oamjms.2016.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 11/15/2022] Open
Abstract
The therapy of erosive lichen planus (ELP) has been particular problem in the treatment of oral lesions. This case of ELP in male patient 29 years old was treated with topic application of the NBF gingival gel, three times a day after meal, previously rinsed with Clorhexidine gluconate 0.12%. After 5 days of treatment, initial improvements were recorded, and after two weeks of application of the NBF gingival gel we observed significant improvement. Clinical monitoring after the fifth day showed mild epithelialization of the eroded mucosa, yet still present erythematous base of the lesion. After the second week the erythema area was significantly reduced and the eroded surfaces of the mucosa were minimal, measured less than 0.5 mm. After the third week there were no erosions to detect on the oral mucosa, yet still present vague redness, which completely pulled after the fourth week. Treatment ended after the fifth week when the topical application of the NBF gingival gel was terminated, and therapy was done, and clinically achieved effects remained stable even after the third month of the treatment. Topic application of the NBF gingival gel with ELP patients showed positive clinical effects in relatively short time period.
Collapse
Affiliation(s)
- Mirjana Popovska
- Faculty of Dentistry, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of Macedonia
| | | | - Sonja Mindova
- Faculty of Dentistry, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of Macedonia
| | - Katerina Dirjanska
- Faculty of Dentistry, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of Macedonia
| | - Stevica Ristoska
- Faculty of Dentistry, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of Macedonia
| | - Emilija Stefanovska
- Faculty of Dentistry, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of Macedonia
| | - Vera Radojkova-Nikolovska
- Faculty of Dentistry, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of Macedonia
| | - Kristina Mitic
- Faculty of Dentistry, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of Macedonia
| | - Biljana Rusevska
- Faculty of Dentistry, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of Macedonia
| |
Collapse
|
38
|
Catchpole O, Mitchell K, Bloor S, Davis P, Suddes A. Antiproliferative activity of New Zealand propolis and phenolic compounds vs human colorectal adenocarcinoma cells. Fitoterapia 2015; 106:167-74. [DOI: 10.1016/j.fitote.2015.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/14/2023]
|
39
|
Ercan N, Erdemir EO, Ozkan SY, Hendek MK. The comparative effect of propolis in two different vehicles; mouthwash and chewing-gum on plaque accumulation and gingival inflammation. Eur J Dent 2015; 9:272-276. [PMID: 26038663 PMCID: PMC4439859 DOI: 10.4103/1305-7456.156851] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective: In general, chemical plaque agents have been used in mouthwashes, gels, and dentifrices. In some situations, application of mouthwashes and dentifrices can be difficult. Therefore, different approaches for oral health-care have been needed. The aim of this study was to evaluate the effect of propolis chewing-gum compared to propolis-containing mouthwash on gingival inflammation and plaque accumulation on patients that refrained from daily oral hygiene procedures for 5 days. Materials and Methods: 10 college students with systemically healthy and very good oral hygiene and gingival health were included in this randomized, single-blind, crossover 5-day plaque regrowth with a 3-day washout period clinical study. After plaque scores were reduced to zero, participants were asked to refrain from oral hygiene procedures and allocated to either propolis mouthwash or chewing-gum group. Chewing-gum was performed after meals 3 times a day for 20 min mouthwash group was instructed to rinse mouthwash 2 times a day for 1 min. On day 5, the clinical periodontal measurements containing plaque and gingival indexes were taken from the participants. Results: The both plaque and gingival indexes of propolis mouthwash group were significantly lower than that of the propolis chewing-gum group (P = 0.005). Conclusion: It was demonstrated that the propolis mouthwash was more effective than the propolis chewing gum on the plaque inhibition and the gingival inflammation.
Collapse
Affiliation(s)
- Nuray Ercan
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Merkez, Kirikkale, Turkiye
| | - Ebru Olgun Erdemir
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Merkez, Kirikkale, Turkiye
| | - Serdar Yucel Ozkan
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Merkez, Kirikkale, Turkiye
| | - Meltem Karsiyaka Hendek
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Merkez, Kirikkale, Turkiye
| |
Collapse
|
40
|
Pellati F, Prencipe FP, Benvenuti S. Headspace solid-phase microextraction-gas chromatography–mass spectrometry characterization of propolis volatile compounds. J Pharm Biomed Anal 2013; 84:103-11. [DOI: 10.1016/j.jpba.2013.05.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 01/03/2023]
|
41
|
Skaba D, Morawiec T, Tanasiewicz M, Mertas A, Bobela E, Szliszka E, Skucha-Nowak M, Dawiec M, Yamamoto R, Ishiai S, Makita Y, Redzynia M, Janoszka B, Niedzielska I, Król W. Influence of the toothpaste with brazilian ethanol extract propolis on the oral cavity health. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:215391. [PMID: 23861699 PMCID: PMC3687592 DOI: 10.1155/2013/215391] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/20/2013] [Indexed: 01/04/2023]
Abstract
Propolis-based therapeutic agents represent this potential for the development of new drugs in dental care. The aim of a clinical-cohort study was to determine the influence of application of toothpaste enriched with Brazilian extract of propolis (EEP) on health status of oral cavity. Laboratory analysis was conducted in order to assess the chemical composition of EEP including total phenolic compounds, the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, ABTS radical cation scavenging activity, and FRAP assay. Clinical research involved two groups of subjects comprising 32 adult patients, with assessment based on the preliminary evaluation of the state of their marginal periodontium. The investigation of oral health indices API, OHI, and SBI and microbiological examination of oral microflora were also carried out. Results obtained indicated time-dependent microbial action of EEP at 50 mg/L concentration, with antimicrobial activity against Gram-positive bacteria. The total decrease of API, OHI, and SBI mean values was observed. Hygienic preparations with 3% content of Brazilian ethanol extract of green propolis (EEP) efficiently support removal of dental plaque and improve the state of marginal periodontium.
Collapse
Affiliation(s)
- Dariusz Skaba
- Department of Conservative Dentistry with Endodontics, Faculty of Medicine and Dentistry, Medical University of Silesia in Katowice, Plac Akademicki 17, 41902 Bytom, Poland
| | - Tadeusz Morawiec
- Department of Oral Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia in Katowice, Plac Akademicki 17, 41-902 Bytom, Poland
| | - Marta Tanasiewicz
- Department of Conservative Dentistry with Endodontics, Faculty of Medicine and Dentistry, Medical University of Silesia in Katowice, Plac Akademicki 17, 41902 Bytom, Poland
| | - Anna Mertas
- Department of Microbiology and Immunology, Faculty of Medicine and Dentistry, Medical University of Silesia in Katowice, Ul Jordana 19, 41-808 Zabrze, Poland
| | - Elżbieta Bobela
- Department of Microbiology and Immunology, Faculty of Medicine and Dentistry, Medical University of Silesia in Katowice, Ul Jordana 19, 41-808 Zabrze, Poland
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Faculty of Medicine and Dentistry, Medical University of Silesia in Katowice, Ul Jordana 19, 41-808 Zabrze, Poland
| | - Małgorzata Skucha-Nowak
- Department of Conservative Dentistry with Endodontics, Faculty of Medicine and Dentistry, Medical University of Silesia in Katowice, Plac Akademicki 17, 41902 Bytom, Poland
| | - Monika Dawiec
- Department of Conservative Dentistry with Endodontics, Faculty of Medicine and Dentistry, Medical University of Silesia in Katowice, Plac Akademicki 17, 41902 Bytom, Poland
| | - Rindai Yamamoto
- Nihon Natural Therapy Research Laboratory, 6-26-12 Nishishinjuku, Shinjuku-ku, 160-0023 Tokyo, Japan
| | - Shinobu Ishiai
- Nihon Natural Therapy Research Laboratory, 6-26-12 Nishishinjuku, Shinjuku-ku, 160-0023 Tokyo, Japan
| | - Yuki Makita
- Nippon Zettoc Research Laboratory, 3-26 Kudan-Minami 2-Chome, Chiyoda-ku, 102-0074 Tokyo, Japan
| | - Małgorzata Redzynia
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz Technical University Ul Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Beata Janoszka
- Department of Chemistry, Faculty of Medicine and Dentistry, Medical University of Silesia in Katowice, Ul Jordana 19, 41-808 Zabrze, Poland
| | - Iwona Niedzielska
- Department of Oral Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia in Katowice, Plac Akademicki 17, 41-902 Bytom, Poland
| | - Wojciech Król
- Department of Microbiology and Immunology, Faculty of Medicine and Dentistry, Medical University of Silesia in Katowice, Ul Jordana 19, 41-808 Zabrze, Poland
| |
Collapse
|
42
|
Important developments in romanian propolis research. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:159392. [PMID: 23818918 PMCID: PMC3683436 DOI: 10.1155/2013/159392] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/08/2013] [Accepted: 05/16/2013] [Indexed: 11/24/2022]
Abstract
The most important developments in propolis analysis and pharmacological properties are discussed. In order to help in the Romanian propolis standardization, different methodologies for chemical composition analysis (UV-VIS, HP-TLC, and HPLC-DAD) are reviewed using new approaches and software (fuzzy divisive hierarchical clustering approach and ChromQuest software) and compared with international studies made until now in propolis research. Practical applications of Romanian propolis in medicinal therapy and cosmetics are reviewed, and quality criteria for further standardization are proposed.
Collapse
|
43
|
A Comparison between Antibacterial Activity of Propolis and Aloe vera on Enterococcus faecalis (an In Vitro Study). INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2013; 2:110-6. [PMID: 24551800 PMCID: PMC3920536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 08/17/2013] [Indexed: 11/06/2022]
Abstract
Removing the bacteria, including Enterococcus faecalis, from the root canal is one of the important aims in endodontic treatment.We aimed to compare the antibacterial activity of Chlorhexidine with two natural drugs. The antibacterial activities of three different propolis extracts (alcohol concentrations: 0, 15, 40%) and Aloe vera gel on E. faecalis were compared using three methods: disk diffusion, microdilution and direct contact test. In addition to the above bacterium, the Aloe vera gel effect on Staphylococcus aureus and Streptococcus mutans was evaluated. Disk diffusion test revealed that propolis ethanolic extracts (the alcohol concentration of 15 and 40%) and Aloe vera gel have antibacterial activities but aqueous extract of propolis did not show any effect in this test. The MICs for propolis ethanolic extracts, Aloe vera gel and aqueous extract of propolis (0% alcohol) were 313 µg/ml, 750 µg/ml, 2250 µg/ml, and ≥ 500 µg/ml respectively, much higher than the Chlorhexidine one. In direct contact test, contrary to Aloe vera, all three propolis extracts showed antibacterial effects on E. faecalis. The Aloe vera gel also showed significant antibacterial effect on S.aureus and S.mutans. The hydroalcoholic extracts of propolis and Aloe vera gel had antibacterial effects on E. faecalis, however, propolis is more potent than Aloe vera. The antibacterial effect of Aloe vera on S. aureus and S. mutans is low (MIC ≥ 2250 µg/ml). Appropriate concentrations of alcoholic extracts of propolis and some fractions of Aloe vera gel might be good choices for disinfecting the root canal in endodontic treatments.
Collapse
|
44
|
Sun LP, Chen AL, Hung HC, Chien YH, Huang JS, Huang CY, Chen YW, Chen CN. Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11748-58. [PMID: 23134323 DOI: 10.1021/jf303261r] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chinese propolis (CP) is a natural product collected by honeybees and a health food raw material. Previous studies have shown that CP exhibits a broad spectrum of biological activities including anticancer, antioxidant, antibacterial, anti-inflammatory, and antiviral activities. The focuses of the present study were the standardization of CP and the possible mechanisms of its active anticancer ingredients. Nine samples of CP were collected from different locations in China. Analyses of the CP samples revealed that all 9 had similar chemical compositions. Parameters analyzed included the CP extract dry weight, total phenolic content, and DPPH free radical scavenging activities. The active anticancer ingredient was isolated, characterized against human MDA-MB-231 breast cancer cells, and identified as chyrsin, a known potent anticancer compound. Chrysin is present at high levels in all 9 of the CP samples, constituting approximately 2.52% to 6.38% of the CP extracts. However, caffeic acid phenethyl ester (CAPE), another potent active ingredient is present in low levels in 9 samples of CP, constituting approximately 0.08% to 1.71% of the CP extracts. Results from analyses of enzymatic activity indicated that chrysin is a histone deacetylase inhibitor (HDACi) and that it markedly inhibited HDAC8 enzymatic activity (EC(50) = 40.2 μM). In vitro analyses demonstrated that chrysin significantly suppressed cell growth and induced differentiation in MDA-MB-231 cells. In a xenograft animal model (MDA-MB-231 cells), orally administered chrysin (90 mg/kg/day) significantly inhibited tumor growth. Despite the geographical diversity of the 9 samples' botanical origins, their chemical compositions and several analyzed parameters were similar, suggesting that CP is standardized, with chrysin being the major active ingredient. Overall, in vitro and in vivo data indicated that chrysin is an HDAC8 inhibitor, which can significantly inhibit tumor growth. Data also suggested that chrysin might represent a suitable candidate for standardization of CP.
Collapse
Affiliation(s)
- Li-Ping Sun
- Bee Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|