1
|
Banjan B, Raju R, Keshava Prasad TS, Abhinand CS. Computational identification of potential bioactive compounds from Triphala against alcoholic liver injury by targeting alcohol dehydrogenase. Mol Divers 2024:10.1007/s11030-024-10879-9. [PMID: 38743308 DOI: 10.1007/s11030-024-10879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Alcoholic liver injury resulting from excessive alcohol consumption is a significant social concern. Alcohol dehydrogenase (ADH) plays a critical role in the conversion of alcohol to acetaldehyde, leading to tissue damage. The management of alcoholic liver injury encompasses nutritional support and, in severe cases liver transplantation, but potential adverse effects exist, and effective medications are currently unavailable. Natural products with their potential benefits and historical use in traditional medicine emerge as promising alternatives. Triphala, a traditional polyherbal formula demonstrates beneficial effects in addressing diverse health concerns, with a notable impact on treating alcoholic liver damage through enhanced liver metabolism. The present study aims to identify potential active phytocompounds in Triphala targeting ADH to prevent alcoholic liver injury. Screening 119 phytocompounds from the Triphala formulation revealed 62 of them showing binding affinity to the active site of the ADH1B protein. Promising lipid-like molecule from Terminalia bellirica, (4aS, 6aR, 6aR, 6bR, 7R, 8aR, 9R, 10R, 11R, 12aR, 14bS)-7, 10, 11-trihydroxy-9-(hydroxymethyl)-2, 2, 6a, 6b, 9, 12a-hexamethyl-1, 3, 4, 5, 6, 6a, 7, 8, 8a, 10, 11, 12, 13, 14b-tetradecahydropicene-4a-carboxylic acid showed high binding efficiency to a competitive ADH inhibitor, 4-Methylpyrazole. Pharmacokinetic analysis further confirmed the drug-likeness and non-hepatotoxicity of the top-ranked compound. Molecular dynamics simulation and MM-PBSA studies revealed the stability of the docked complexes with minimal fluctuation and consistency of the hydrogen bonds throughout the simulation. Together, computational investigations suggest that (4aS, 6aR, 6aR, 6bR, 7R, 8aR, 9R, 10R, 11R, 12aR, 14bS)-7, 10, 11-trihydroxy-9-(hydroxymethyl)-2, 2, 6a, 6b, 9, 12a-hexamethyl-1, 3, 4, 5, 6, 6a, 7, 8, 8a, 10, 11, 12, 13, 14b-tetradecahydropicene-4a-carboxylic acid from the Triphala formulation holds promise as an ADH inhibitor, suggesting an alternative therapy for alcoholic liver injury.
Collapse
Affiliation(s)
- Bhavya Banjan
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
2
|
Li X, Wu L, Wu R, Sun M, Fu K, Kuang T, Wang Z. Comparison of medicinal preparations of Ayurveda in India and five traditional medicines in China. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114775. [PMID: 34742863 DOI: 10.1016/j.jep.2021.114775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayurveda is the main traditional healthcare system in Indian medicine. Tibetan medicine (TM), Mongolian medicine (MM), Buddhist medicine (BM), Dai medicine (DM), and Uyghur medicine (UM) are main traditional medicines practiced in China. These are existing traditional medical systems that still play a role in disease prevention and treatment. AIM OF THE STUDY To reveal the similarities and differences of traditional medicinal preparations between Ayurveda in India and five traditional medicines in China to deepen medical exchanges and cooperation between the two countries and beyond. METHODS All preparations were extracted from statutory pharmacopoeias, ministry standards, and prescription textbooks from China and India. The information of each preparation, such as therapeutic uses, medicinal materials, and preparation forms, was recorded in Excel for statistical analysis and visual comparison. RESULTS A total of 645 Ayurvedic preparations, 458 TM preparations, 164 MM preparations, 616 BM preparations, 227 DM preparations, and 94 UM preparations were identified. Preparations of the six traditional medicines were mostly used for treating digestive, respiratory, and urogenital system diseases. The preparation forms of these six traditional medicines are mainly pills and powders. There are 38 shared-use medicinal materials in Ayurveda and TM preparations, 25 in Ayurveda and MM preparations, 30 in Ayurveda and BM preparations, 39 in Ayurveda and DM preparations, and 31 in Ayurveda and UM preparations. Finally, we selected one important shared-use preparation (Triphala) and 51 medicinal materials to research traditional use and modern pharmacology. CONCLUSIONS These preparations are used by different prescribers and users of medicinal materials in different medical systems with the similarities and differences. The similarities may reflect the historical exchanges of traditional medicines between the two countries. The differences showed that traditional medicines in China have absorbed some theories, diagnoses, and treatments from Ayurveda but also retained their own ethnic and regional characteristics.
Collapse
Affiliation(s)
- Xiaoli Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ruixia Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ming Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tingting Kuang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Research Institute of Traditional Indian Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Research Institute of Traditional Indian Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Ahmed S, Ding X, Sharma A. Exploring scientific validation of Triphala Rasayana in ayurveda as a source of rejuvenation for contemporary healthcare: An update. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113829. [PMID: 33465446 DOI: 10.1016/j.jep.2021.113829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/26/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayurveda remains the classical and comprehensive part of the ancient Indian medicine system for well-being promotive, disease preventive, and revival approach for the human body. Triphala Rasayana is mentioned in Ayurveda, comprising fruits of three plant species viz. Phyllanthus emblica L. (P. emblica), Terminalia chebula Retz (T. chebula), and Terminalia bellirica Roxb (T.bellirica). Triphala Rasayana has been utilized in various traditional medicine systems, viz., Ayurveda, Siddha, and Unani. Traditionally Rasayana based drugs are utilized in different kinds of diseases without pathophysiological associations as indicated by current medication. Various medicinal attributes of Triphala Rasayana include antioxidant, anticancer, antidiabetic, antimicrobial, immunomodulatory, and anticataract and is also considered as a pillar for gastrointestinal treatment, specifically in functional gastrointestinal disorders (FGIDs). Due to Rasayana's accessible mode of administration, availability, and affordability, there is an increase in its global acceptance. AIM OF REVIEW This review article summarizes the scientific validation, traditional uses, bioactive compounds, and ethnopharmacological properties of Triphala Rasayana. It also documents recent data on in vivo and in vitro pharmacological studies and clinical effects of Triphala Rasayana. MATERIAL AND METHOD A literature review is carried out using PubMed, ScienceDirect, Scopus, web of science, Ayush Research Portal, and Clinical Trials Registry-India. In addition to an electronic search, traditional ayurvedic texts and books were used as sources of information. RESULTS Traditionally, "Triphala Rasayana" is classified as a tridoshic rasayana and one of the most well-studied ayurvedic Rasayana. It showed various pharmacological activities such as anticancer, antioxidant, antibacterial, immunomodulatory, cardioprotective, and antidiabetic. Besides this, Rasayana has reported ethnopharmacological activities such as antimicrobial, anticataract, wound healing, and radioprotection. It has shown a good impact on the gastrointestinal tract (GIT) system with the reported pharmacological activities in gastrointestinal disorders such as constipation, gastric ulcer, and inflammatory bowel disease (IBD). Phytochemical studies of Triphala Rasayana revealed chemical constituents like gallic acid, ellagic acid, chebulic acid, chebulinic acid, methyl gallate, emblicanin A, and emblicanin B. Additionally, clinical studies found Triphala Rasayana to be effective against diabetes, constipation, and obesity. CONCLUSION The present review revealed that Triphala Rasayana may treat a diverse range of diseases, especially GIT disorders. Considering the beneficial properties of Triphala Rasayana and it's proven non-toxic nature could be a source of rejuvenation in contemporary healthcare. Nevertheless, its clinical data effectively provided precious signals to correlate ayurvedic biology and modern medicine.
Collapse
Affiliation(s)
- Suhail Ahmed
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| | - Xianting Ding
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Alok Sharma
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
4
|
Durgapal S, Juyal V, Verma A. In vitro antioxidant and ex vivo anti-cataract activity of ethanolic extract of Cineraria maritima: a traditional plant from Nilgiri hills. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00258-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Background
Cineraria maritima has a long history of use in the treatment of cataract and other eye-related problems in the homeopathic system of medicines. High oxidative stress is one of the major underlying causes of cataract which results in the precipitation of natural protein present in the lenses with aging. This research has been carried out to determine the anti-cataract activity of C. maritima by performing various antioxidant techniques such as 1,1-diphenyl-2-picrylhydrazyl, nitric oxide, hydrogen peroxide, and studies in oxidative stress–induced ex vivo cataract model.
Results
Results of the study conducted in the ethanolic extract of aerial parts (leaves and stems) of C. maritima revealed the presence of various phytoconstituents such as alkaloids, phenols, flavonoids, etc. Total phenol and total flavonoid content was found to be 6.31 ± 0.06 % w/w and 2.14 ± 0.09% w/w respectively, which revealed that the plant contains a good amount of these compounds and hence possesses good antioxidant activity. Furthermore, IC50 values obtained from all the methods gave strong evidence regarding the antioxidant potential of this plant. Anti-cataract activity was also investigated using goat eye lenses and promising results were obtained which speak voluminously about its anti-cataract potential and support its well-prescribed use.
Conclusion
Results obtained with this study clearly supported the significant antioxidant potential and anti-cataract activity of this plant. Further, this plant demands great attention for the development of suitable novel dosage forms for the effective treatment of cataract.
Collapse
|
5
|
Jantrapirom S, Hirunsatitpron P, Potikanond S, Nimlamool W, Hanprasertpong N. Pharmacological Benefits of Triphala: A Perspective for Allergic Rhinitis. Front Pharmacol 2021; 12:628198. [PMID: 33995026 PMCID: PMC8120106 DOI: 10.3389/fphar.2021.628198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Allergic rhinitis (AR) is considered a major nasal condition impacting a large number of people around the world, and it is now becoming a global health problem. Because the underlying mechanisms of AR are complex, the development of single-drug treatment might not be enough to treat a wide spectrum of the disease. Although the standard guidelines classify and provide suitable diagnosis and treatment, the vast majority of people with AR are still without any means of controlling it. Moreover, the benefits of AR drugs are sometimes accompanied by undesirable side effects. Thus, it is becoming a significant challenge to find effective therapies with limited undesirable side effects for a majority of patients suffering from uncontrolled AR. Aller-7/NR-A2, a polyherbal formulation, has revealed promising results in patients by reducing nasal symptoms and eosinophil counts without serious adverse effects. Interestingly, three out of seven of the herbals in the Aller-7/NR-A2 formulation are also found in an Ayurvedic polyherbal formulation known as “Triphala,” which is a potential candidate for the treatment of AR. However, there are no current studies that have examined the effects of Triphala on the disease. This review aims to describe the complexity of AR pathophysiology, currently available treatments, and the effects of Triphala on AR in order to help develop it as a promising alternative treatment in the future.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Drosophila Center for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai, University, Chiang Mai, Thailand
| | - Pannaphak Hirunsatitpron
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nutthiya Hanprasertpong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Protective Effect of Triphala against Oxidative Stress-Induced Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6674988. [PMID: 33898626 PMCID: PMC8052154 DOI: 10.1155/2021/6674988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 11/17/2022]
Abstract
Background Oxidative stress is implicated in the progression of many neurological diseases, which could be induced by various chemicals, such as hydrogen peroxide (H2O2) and acrylamide. Triphala is a well-recognized Ayurvedic medicine that possesses different therapeutic properties (e.g., antihistamine, antioxidant, anticancer, anti-inflammatory, antibacterial, and anticariogenic effects). However, little information is available regarding the neuroprotective effect of Triphala on oxidative stress. Materials and Methods An in vitro H2O2-induced SH-SY5Y cell model and an in vivo acrylamide-induced zebrafish model were established. Cell viability, apoptosis, and proliferation were examined by MTT assay, ELISA, and flow cytometric analysis, respectively. The molecular mechanism underlying the antioxidant activity of Triphala against H2O2 was investigated dose dependently by Western blotting. The in vivo neuroprotective effect of Triphala on acrylamide-induced oxidative injury in Danio rerio was determined using immunofluorescence staining. Results The results indicated that Triphala plays a neuroprotective role against H2O2 toxicity in inhibiting cell apoptosis and promoting cell proliferation. Furthermore, Triphala pretreatment suppressed the phosphorylation of the mitogen-activated protein kinase (MARK) signal pathway (p-Erk1/2, p-JNK1/2, and p-p38), whereas it restored the activities of antioxidant enzymes (superoxide dismutase 1 (SOD1) and catalase) in the H2O2-treated SH-SY5Y cells. Consistently, similar protective effects of Triphala were observed in declining neuroapoptosis and scavenging free radicals in the zebrafish central neural system, possessing a critical neuroprotective property against acrylamide-induced oxidative stress. Conclusion In summary, Triphala is a promising neuroprotective agent against oxidative stress in SH-SY5Y cells and zebrafishes with significant antiapoptosis and antioxidant activities.
Collapse
|
7
|
Gupta A, Kumar R, Bhattacharyya P, Bishayee A, Pandey AK. Terminalia bellirica (Gaertn.) roxb. (Bahera) in health and disease: A systematic and comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153278. [PMID: 32781393 DOI: 10.1016/j.phymed.2020.153278] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/18/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Terminalia bellirica (Gaertn.) Roxb. is one of the oldest medicinal herbs of India, Pakistan, Nepal, Bangladesh and Sri Lanka as well as South-East Asia. Its medicinal utility has been described in the different traditional medicinal systems, such as Ayurveda, Unani, Siddha, and traditional Chinese medicine. PURPOSE The present study is aimed at providing a comprehensive overview on the traditional medicinal use, major phytoconstituents, biological and pharmacological activities and related mechanisms of actions and clinical studies of T. bellirica. Another objective is to describe current limitations and future direction of T. bellirica-related research. METHODS PubMed, ScienceDirect, Scopus, Cochrane Library, and EBOSCO host databases were selected to explore literature published between 1980 and 2020 (till March). Keywords used in various combinations comprised of Terminalia bellirica, phytoconstituents, health effects, pharmacological activities, molecular targets, in vitro, in vivo, clinical studies, and disease prevention. RESULTS A broad spectrum in vitro and in vivo studies suggested various biological and pharmacological effects, including antioxidant, anti-inflammatory, immunomodulatory, antimicrobial, hepatoprotective, renoprotective, antidiabetic, anti-hyperlipidemic, and anticancer activities. Diverse bioactivities of T. bellirica have been ascribed to the presence of many bioactive phytochemicals, such as glucoside, tannins, gallic acid, corilagin, ellagic acid, ethyl gallate, galloyl glucose, chebulagic acid, and arjunolic acid. CONCLUSION Preclinical and clinical studies have suggested that T. bellirica plant and its phytoconstituents have immense potential for prevention and treatment of various diseases. Additional in vivo studies and clinical trials are warranted to realize the complete medicinal attributes of this plant.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj - 211 002, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj - 211 002, Uttar Pradesh, India
| | - Piyali Bhattacharyya
- Department of Nutrition, School of Health Sciences, Ana G. Méndez University, Gurabo, PR 00778, United States
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, United States.
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj - 211 002, Uttar Pradesh, India.
| |
Collapse
|
8
|
Heruye SH, Maffofou Nkenyi LN, Singh NU, Yalzadeh D, Ngele KK, Njie-Mbye YF, Ohia SE, Opere CA. Current Trends in the Pharmacotherapy of Cataracts. Pharmaceuticals (Basel) 2020; 13:E15. [PMID: 31963166 PMCID: PMC7168925 DOI: 10.3390/ph13010015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Cataracts, one of the leading causes of preventable blindness worldwide, refers to lens degradation that is characterized by clouding, with consequent blurry vision. As life expectancies improve, the number of people affected with cataracts is predicted to increase worldwide, especially in low-income nations with limited access to surgery. Although cataract surgery is considered safe, it is associated with some complications such as retinal detachment, warranting a search for cheap, pharmacological alternatives to the management of this ocular disease. The lens is richly endowed with a complex system of non-enzymatic and enzymatic antioxidants which scavenge reactive oxygen species to preserve lens proteins. Depletion and/or failure in this primary antioxidant defense system contributes to the damage observed in lenticular molecules and their repair mechanisms, ultimately causing cataracts. Several attempts have been made to counteract experimentally induced cataract using in vitro, ex vivo, and in vivo techniques. The majority of the anti-cataract compounds tested, including plant extracts and naturally-occurring compounds, lies in their antioxidant and/or free radical scavenging and/or anti-inflammatory propensity. In addition to providing an overview of the pathophysiology of cataracts, this review focuses on the role of various categories of natural and synthetic compounds on experimentally-induced cataracts.
Collapse
Affiliation(s)
- Segewkal H. Heruye
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Leonce N. Maffofou Nkenyi
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Neetu U. Singh
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | | | - Kalu K. Ngele
- Department of Biology/Microbiology/Biotechnology, Federal University Ndufu Alike Ikwo, Abakaliki, Nigeria
| | - Ya-Fatou Njie-Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Sunny E. Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Catherine A. Opere
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
9
|
Prasad S, Srivastava SK. Oxidative Stress and Cancer: Chemopreventive and Therapeutic Role of Triphala. Antioxidants (Basel) 2020; 9:antiox9010072. [PMID: 31941067 PMCID: PMC7022920 DOI: 10.3390/antiox9010072] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress, caused by the overproduction of free radicals, leads to the development of many chronic diseases including cancer. Free radicals are known to damage cellular biomolecules like lipids, proteins, and DNA that results in activation of multiple signaling pathways, growth factors, transcription factors, kinases, inflammatory and cell cycle regulatory molecules. Antioxidants, which are classified as exogenous and endogenous, are responsible for the removal of free radicals and consequently the reduction in oxidative stress-mediated diseases. Diet and medicinal herbs are the major source of antioxidants. Triphala, which is a traditional Ayurvedic formulation that has been used for centuries, has been shown to have immense potential to boost antioxidant activity. It scavenges free radicals, restores antioxidant enzymes and non-enzyme levels, and decreases lipid peroxidation. In addition, Triphala is revered as a chemopreventive, chemotherapeutic, immunomodulatory, and radioprotective agent. Accumulated evidence has revealed that Triphala modulates multiple cell signaling pathways including, ERK, MAPK, NF-κB, Akt, c-Myc, VEGFR, mTOR, tubulin, p53, cyclin D1, anti-apoptotic and pro-apoptotic proteins. The present review focuses on the comprehensive appraisal of Triphala in oxidative stress and cancer.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Correspondence: or (S.P.); (S.K.S.); Tel.: +1-325-696-0464 (S.K.S.); Fax: +1-325-696-3875 (S.K.S.)
| | - Sanjay K. Srivastava
- Correspondence: or (S.P.); (S.K.S.); Tel.: +1-325-696-0464 (S.K.S.); Fax: +1-325-696-3875 (S.K.S.)
| |
Collapse
|
10
|
Tewari D, Samoilă O, Gocan D, Mocan A, Moldovan C, Devkota HP, Atanasov AG, Zengin G, Echeverría J, Vodnar D, Szabo B, Crişan G. Medicinal Plants and Natural Products Used in Cataract Management. Front Pharmacol 2019; 10:466. [PMID: 31263410 PMCID: PMC6585469 DOI: 10.3389/fphar.2019.00466] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023] Open
Abstract
Cataract is the leading reason of blindness worldwide and is defined by the presence of any lens opacities or loss of transparency. The most common symptoms of cataract are impaired vision, decreased contrast sensitivity, color disturbance, and glare. Oxidative stress is among the main mechanisms involved in the development of age-related cataract. Surgery through phacoemulsification and intraocular lens implantation is the most effective method for cataract treatment, however, there are chances of serious complications and irreversible loss of vision associated with the surgery. Natural compounds consisting of antioxidant or anti-inflammatory secondary metabolites can serve as potential leads for anticataract agents. In this review, we tried to document medicinal plants and plant-based natural products used for cataract treatment worldwide, which are gathered from available ethnopharmacological/ethnobotanical data. We have extensively explored a number of recognized databases like Scifinder, PubMed, Science Direct, Google Scholar, and Scopus by using keywords and phrases such as “cataract”, “blindness”, “traditional medicine”, “ethnopharmacology”, “ethnobotany”, “herbs”, “medicinal plants”, or other relevant terms, and summarized the plants/phytoconstituents that are evaluated in different models of cataract and also tabulated 44 plants that are traditionally used in cataract in various folklore medical practices. Moreover, we also categorized the plants according to scientific studies carried out in different cataract models with their mechanisms of action.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ovidiu Samoilă
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gocan
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cadmiel Moldovan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Dan Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bianca Szabo
- Department of Anatomy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gianina Crişan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Huang C, Li C, Muhemaitia P. Impediment of selenite-induced cataract in rats by combinatorial drug laden liposomal preparation. Libyan J Med 2019; 14:1548252. [PMID: 30460877 PMCID: PMC6249608 DOI: 10.1080/19932820.2018.1548252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cataract is the leading cause of blindness globally with surgery being the only form of treatment. But cataract surgery is accompanied by complications, chiefly intra-ocular infections. Hence, preventive nanoformulations may be extremely beneficial. In the present study, novel chitosan-coated liposomal formulations encapsulating a combination of drugs, lanosterol and hesperetin were prepared and characterized. The combinatorial liposomes were prepared by thin film evaporation active extrusion method. The characterization of liposomes was done by transmission electron microscopy, zeta potential, encapsulation efficiency, stability, cytotoxicity and in vitro release studies. The main difference between the chitosan-coated and uncoated combinatorial liposomes is the release of drugs as indicated by the in vitro release studies. The slow and sustained release of the drugs from chitosan-coated ones as against the burst release from uncoated indicates an increased retention time for combinatorial drugs in cornea. This leads to a delay in progression of cataract as seen from in vivo studies. Cytotoxicity studies indicate no cell toxicity of the coating of chitosan or the combination of drugs. Stability studies indicate that there were almost no changes in size, zeta potential and polydispersity index values of the combinatorial liposomes upon storage at room temperature for 60 days. Another important study is the estimation of antioxidant defense system. The estimated values of glutathione reductase, malondialdehyde and chief antioxidant enzymes point toward an upregulation of antioxidant defense system. From the results, it may be concluded that novel chitosan-coated combinatorial liposomes are effective in delaying or preventing of cataract.
Collapse
Affiliation(s)
- Caixuan Huang
- Eye Center, Remain Hospital of Wuhan University, Wuhan, China
| | - Cairui Li
- Department of Ophthalmology, Affiliated Hospital of Dali University, Dali City, Yunnan Province, China
| | - Paerheti Muhemaitia
- Department of Ophthalmology, Urumqi Eye and Otolaryngology Faculty Hospital, Urumqi, Xinjiang, China
| |
Collapse
|
12
|
Wang M, Li Y, Hu X. Chebulinic acid derived from triphala is a promising antitumour agent in human colorectal carcinoma cell lines. Altern Ther Health Med 2018; 18:342. [PMID: 30587184 PMCID: PMC6307174 DOI: 10.1186/s12906-018-2412-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/17/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Triphala is an Ayurvedic rasayana formulation reputed for its antitumour activities, and chebulinic acid and chebulagic acid, along with other phenolic acids, have been proposed to be responsible for its effects. METHODS In this study, the anti-proliferative activities of these agents were evaluated in colorectal carcinoma cell lines with three phenotypes exposed to several batches of triphala samples with different quantities of chebulinic acid and chebulagic acid. The pro-apoptotic and anti-migratory activities and the probable antitumour mechanisms of the more potent anti-proliferative phytochemical were also investigated. RESULTS The results demonstrated that chebulinic acid, which exerts potent anti-proliferative, pro-apoptotic and anti-migratory effects, is a key molecule for maintaining the antitumour efficacy of triphala. The antitumour mechanism of chebulinic acid is probably related to the PI3K/AKT and MAPK/ERK pathways. CONCLUSIONS Chebulinic acid is not only a critical component of the anticancer activities of triphala but also a promising natural multi-target antitumour agent with therapeutic potential.
Collapse
|
13
|
Wang L, Liu W, Huang X. An approach to revolutionize cataract treatment by enhancing drug probing through intraocular cell line. Libyan J Med 2018; 13:1500347. [PMID: 30045674 PMCID: PMC6070994 DOI: 10.1080/19932820.2018.1500347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The purpose of this study is to prepare and characterize solid lipid nanoparticles (SLN) of N-Acetyl Carnosine (NAC) to treat cataract since surgery necessitates equipments and professional help. Cataract is believed to be formed by the biochemical approach where the crystalline eye proteins lose solubility and forms high molecular weight masses. Added advantages of SLN of NAC (henceforth referred as SLN-NAC) in the study are reduced size, sustained release and better corneal penetration of drug. The method of preparation of SLN-NAC by Mill’s method is unique in itself. The size of the SLN-NAC was 75 ± 10 nm in the range of ideal for penetration. The in-vitro release study and the SLN-NAC formulations prepared with Mill’s method demonstrated sustained release up to 24 h following an initial burst after 1 h. The zeta potential of the prepared formulation was −22.1 ± 1 mV. Corneal permeation studies using goat corneas indicate that SLN-NAC penetration rate was higher than those from NAC eye drops. Corneal hydration studies indicated that the formulation caused no harm to the corneal cells. Therefore it may be concluded that SLN-NAC may revolutionize cataract treatment and reversal by improving drug permeation, reducing toxicity and no damage to corneal tissue.
Collapse
Affiliation(s)
- Ling Wang
- a Department of Ophthalmology , The First Affiliated Hospital of Hainan Medical College , Haikou , Hainan , China
| | - Weixian Liu
- a Department of Ophthalmology , The First Affiliated Hospital of Hainan Medical College , Haikou , Hainan , China
| | - Xionggao Huang
- a Department of Ophthalmology , The First Affiliated Hospital of Hainan Medical College , Haikou , Hainan , China
| |
Collapse
|
14
|
Abstract
Aim: The aim of this article is to review the current literature on the therapeutic uses and efficacy of Triphala. Herbal remedies are among the most ancient medicines used in traditional systems of healthcare such as Ayurveda. Triphala, a well-recognized and highly efficacious polyherbal Ayurvedic medicine consisting of fruits of the plant species Emblica officinalis (Amalaki), Terminalia bellerica (Bibhitaki), and Terminalia chebula (Haritaki), is a cornerstone of gastrointestinal and rejuvenative treatment. Methods: A search of the PubMed database was conducted. Results: In addition, numerous additional therapeutic uses described both in the Ayurvedic medical literature and anecdotally are being validated scientifically. In addition to laxative action, Triphala research has found the formula to be potentially effective for several clinical uses such as appetite stimulation, reduction of hyperacidity, antioxidant, anti-inflammatory, immunomodulating, antibacterial, antimutagenic, adaptogenic, hypoglycemic, antineoplastic, chemoprotective, and radioprotective effects, and prevention of dental caries. Polyphenols in Triphala modulate the human gut microbiome and thereby promote the growth of beneficial Bifidobacteria and Lactobacillus while inhibiting the growth of undesirable gut microbes. The bioactivity of Triphala is elicited by gut microbiota to generate a variety of anti-inflammatory compounds. Conclusions: This review summarizes recent data on pharmacological properties and clinical effects of Triphala while highlighting areas in need of additional investigation and clinical development.
Collapse
Affiliation(s)
- Christine Tara Peterson
- 1 Department of Family Medicine and Public Health, UC San Diego School of Medicine, Center of Excellence for Research and Training in Integrative Health , La Jolla, CA.,2 Chopra Foundation , Department of Ayurveda and Yoga Research, Carlsbad, CA
| | - Kate Denniston
- 3 Department of Naturopathic Medicine, Bastyr University , San Diego, CA
| | - Deepak Chopra
- 1 Department of Family Medicine and Public Health, UC San Diego School of Medicine, Center of Excellence for Research and Training in Integrative Health , La Jolla, CA.,2 Chopra Foundation , Department of Ayurveda and Yoga Research, Carlsbad, CA
| |
Collapse
|
15
|
|
16
|
Sundararajan M, Thomas PA, Babyshalini K, Geraldine P. Identification of phytoconstituents and in-vitro evaluation of the putative anticataractogenic effect of an ethanolic root extract of Leucas aspera. Biomed Pharmacother 2016; 85:87-101. [PMID: 27930991 DOI: 10.1016/j.biopha.2016.11.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/19/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022] Open
Abstract
Modern herbal medicine has played a significant role in treating oxidative stress and related complications. In the present investigation, gas chromatography-mass spectrometric analysis of ethanolic extracts of the leaf and of the root of Leucas aspera (L. aspera) (Willd.) Link separately showed the presence of various phytoconstituents; major components have already been reported to possess various biological, including antioxidant, activities. Of the two extracts analyzed, the root extract exhibited more potential antioxidant activity than did the leaf extract. Since this finding correlated with more perceptible amounts of antioxidant components being detected in the ethanolic extract of L. aspera root, the root extract was evaluated for possible anticataractogenic potential in cultured Wistar rat lenses. Following incubation of Wistar rat lenses for 24h at 37°C in Dulbecco's modified Eagle's medium (DMEM), gross morphological examination revealed that none of the eight lenses incubated in DMEM alone (Group I) exhibited any opacification (Grade 0), whereas all eight lenses incubated in DMEM that contained sodium selenite (100μM selenite/ml of DMEM) (Group II) exhibited thick opacification (Grade +++). In contrast, only one out of eight lenses incubated in DMEM containing sodium selenite (100μM selenite/ml of DMEM) and simultaneously exposed to the L. aspera root extract (300μg/ml of DMEM) (Group III) exhibited a slight degree of opacification (Grade +) after 24h incubation, while the remaining seven lenses did not show any opacification (Grade 0). The mean activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase and the mean level of reduced glutathione were all significantly (p<0.05) higher in Group III lenses than the mean values in Group II lenses. The mean concentration of malondialdehyde in Group III lenses was significantly (p<0.05) lower than that in Group II lenses. Further, significantly (p<0.05) lower mean mRNA transcript levels of the genes encoding αA- and βB1-crystallins, as well as significantly lower mean levels of the αA- and βB1-crystallin proteins themselves, were observed in Group II lenses. However, in Group III lenses, the mean mRNA transcript levels of the crystallin genes, and the mean protein levels, were essentially similar to those noted in normal control (Group I) lenses. The results of the present study suggest that in selenite-challenged Wistar rat lenses simultaneously exposed to an ethanolic extract of L. aspera root, lenticular opacification was prevented by mean activities of enzymatic antioxidants, mean levels of reduced glutathione and malondialdehyde mean expression levels of genes encoding αA- and βB1-crystallins, and mean levels of the crystallin proteins themselves, being maintained at near normal levels. Further studies are required to confirm whether the ethanolic extract of the root of L. aspera can be developed for pharmacological management of cataract.
Collapse
Affiliation(s)
- Mahalingam Sundararajan
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Philip A Thomas
- Department of Ocular Microbiology, Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli 620 001, Tamil Nadu, India
| | - Karuppan Babyshalini
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Pitchairaj Geraldine
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
17
|
Dubey S, Saha S, Saraf SA. In vitroanti-cataract evaluation of standardisedAbies pindrowleaf extract using isolated goat lenses. Nat Prod Res 2014; 29:1145-8. [DOI: 10.1080/14786419.2014.980250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Mani Satyam S, Kurady Bairy L, Pirasanthan R, Lalit Vaishnav R. Grape seed extract and zinc containing nutritional food supplement prevents onset and progression of age-related cataract in wistar rats. J Nutr Health Aging 2014; 18:524-30. [PMID: 24886740 DOI: 10.1007/s12603-014-0020-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To study possible inhibition of oxidative stress and cataract formation by single combined formulation of grape seed extract and Zincovit tablets against sodium selenite-induced age-related cataract in Wistar rat pups. METHODS Oxidative stress and consequent cataract formation was induced by subcutaneous administration of a single dose of sodium selenite (10 µmoles/kg) to Wistar rat pups on day 7 post-natally. In experiments designed to inhibit such cataract formation, the pups were pretreated subcutaneously with combined formulation of grape seed extract and Zincovit tablets (40, 80 and 160 mg/kg), one day prior to the administration of selenite and continuing such treatment till day 20, when the experiments were terminated. The extent of tissue damage caused by the selenite was assessed biochemically by measurements of the levels of reduced glutathione, glutathione peroxidase, glucose-6-phosphate dehydrogenase, protein thiol, catalase, superoxide dismutase, malondialdehyde, aldose reductase, sorbitol dehydrogenase and adenosine triphosphate in the isolated lenses. Cataract formation and its prevention were monitored by examining the eye with pen light illumination and subsequent photography of the isolated lenses. RESULTS Injection of selenite led to a significant loss of lens clarity due to cataract formation. In the group treated with combined formulation of grape seed extract and Zincovit tablets, the formation of cataract was significantly prevented. In the normal and selenite induced senile cataract control group, the levels of lens oxidative stress markers, G6PD and ATP were substantially lower than in the grape seed extract with Zincovit tablets treated group (p < 0.05). CONCLUSION Over all, the results suggest that single combined formulation of grape seed extract and Zincovit tablets may offer a prophylactic measure against onset and progression of age- related cataract of human subjects as nutritional food supplement.
Collapse
Affiliation(s)
- S Mani Satyam
- Dr. K. L. Bairy, Professor and Head of Pharmacology, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka (India). Phone number- 0820-2922365, Fax number- 0820-2922083, E-mail-
| | | | | | | |
Collapse
|
19
|
Putative free radical-scavenging activity of an extract of Cineraria maritima in preventing selenite-induced cataractogenesis in Wistar rat pups. Mol Vis 2013; 19:2551-60. [PMID: 24357923 PMCID: PMC3867162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 12/12/2013] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To investigate the possible free radical-scavenging activity of an extract of Cineraria maritima on selenite-induced cataractous lenses in Wistar rat pups. METHODS In the present study, Wistar rat pups were divided into three experimental groups. On P10, Group I (control) rat pups received an intraperitoneal injection of 0.89% saline. Rats in groups II (selenite-challenged, untreated) and III (selenite-challenged, C. maritima treated) received a subcutaneous injection of sodium selenite (19 μmol/kg bodyweight); Group III rat pups also received an intraperitoneal injection of the extract of C. maritima (350 mg/kg bodyweight) once daily P9-14. Both eyes of each pup were examined from P16 until P30. Cytochemical localization of nitroblue tetrazolium salts and generation of superoxide, hydroxyl, and nitric oxide levels were measured. The expression of the inducible nitric oxide synthase gene was evaluated with reverse transcription-PCR. Immunoblot analysis was also performed to confirm the differential expression of the inducible nitric oxide synthase protein. RESULTS Subcutaneous injection of sodium selenite led to severe oxidative damage in the lenticular tissues, shown by increased formation of formazan crystals, elevated generation of superoxide, hydroxyl, and nitric oxide radicals, and elevated inducible nitric oxide synthase gene and protein expression that possibly contributed to the opacification of the lens and thus cataract formation. When rat pups were treated with intraperitoneal administration of the extract of C. maritima, the generation of free radicals as well as the messenger ribonucleic acid and protein expression of inducible nitric oxide synthase were maintained at near normal levels. CONCLUSIONS The data generated by this study suggest that an ethanolic extract of C. maritima possibly prevents cataractogenesis in a rat model by minimizing free radical generation.
Collapse
|
20
|
Natural antioxidant biomolecules promises future nanomedicine based therapy for cataract. Colloids Surf B Biointerfaces 2013; 112:554-62. [DOI: 10.1016/j.colsurfb.2013.07.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 11/20/2022]
|
21
|
Yang CX, Yan H, Ding TB. Hydrogen saline prevents selenite-induced cataract in rats. Mol Vis 2013; 19:1684-93. [PMID: 23922487 PMCID: PMC3731457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 07/26/2013] [Indexed: 11/05/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the potential antioxidative effect and mechanism for the protective effects of hydrogen saline on selenite-induced cataract in rats. METHODS Sprague-Dawley rat pups were divided into the following groups: control (Group A), selenite induced (Group B), and selenite plus hydrogen saline treated (Group C). Rat pups in Groups B and C received a single subcutaneous injection of sodium selenite (25 μmol/kg bodyweight) on postnatal day 12. Group C also received an intraperitoneal injection of H2 saline (5 ml/kg bodyweight) daily from postnatal day 8 to postnatal day 17. The development of cataract was assessed weekly by slit-lamp examination for 2 weeks. After sacrifice, extricated lenses were analyzed for activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, levels of malondialdehyde, reduced glutathione (GSH), and total sulfhydryl contents. RESULTS The magnitude of lens opacification in Group B was significantly higher than in Group A (p<0.05), while Group C had less opacification than Group B (p<0.05). Compared with Group B, the mean activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, levels of GSH, and total sulfhydryl contents were higher, whereas the level of malondialdehyde was lower following treatment with hydrogen saline(p<0.05). CONCLUSIONS This is an initial report showing that hydrogen saline can prevent selenite-induced cataract in rats. It acts via maintaining antioxidant enzymes and GSH, protecting the sulfhydryl group, and inhibiting lipid peroxidation.
Collapse
Affiliation(s)
- Chun-xiao Yang
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Hong Yan
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Tian-bing Ding
- Department of Microbiology, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
22
|
|
23
|
Baliga MS, Meera S, Mathai B, Rai MP, Pawar V, Palatty PL. Scientific validation of the ethnomedicinal properties of the Ayurvedic drug Triphala: A review. Chin J Integr Med 2012; 18:946-54. [DOI: 10.1007/s11655-012-1299-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Indexed: 11/30/2022]
|
24
|
Radha A, Devi Rukhmini S, Sasikala V, Sakunthala PR, Sreedharan B, Velayudhan MP, Abraham A. Bioactive derivatives of curcumin attenuate cataract formation in vitro. Chem Biol Drug Des 2012; 80:887-92. [PMID: 22883304 DOI: 10.1111/cbdd.12021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, curcumin derivatives salicylidenecurcumin (CD1) and benzalidenecurcumin (CD2)] were prepared, and their biological activity was compared in in vitro selenite-induced cataract model. The antioxidant activity was studied using DPPH radical scavenging assay. Knoevenagel condensates of curcumin exhibited higher DPPH radical scavenging activity compared with curcumin. The anticataractogenic potential of curcumin derivatives was analyzed using lens organ culture method. The activity of antioxidant enzymes and calcium homeostasis was reversed to near normal levels following treatment in organ cultured rat lenses. These results indicated that curcumin and its derivatives--CD1 and CD2--are beneficial against selenite-induced cataract in vitro. Of these, CD1 is having higher bioactive potential compared with curcumin and CD2.
Collapse
Affiliation(s)
- Asha Radha
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Qi HP, Wei SQ, Zhang LQ, Gao XC, Yu NN, Bi S, Cui H. Preventive effect of danshensu on selenite-induced cataractogenesis in cultured rat lens. Clin Exp Ophthalmol 2012; 41:172-9. [PMID: 22712555 DOI: 10.1111/j.1442-9071.2012.02837.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND To investigate the preventive effect of danshensu on the selenite-induced opacification of cultured rat lenses. METHODS Isolated lens were divided into three groups with eight lenses in each group. Group I: lenses were incubated with M199 medium alone; Group II: incubated in M199 containing 200 µmol/L sodium selenite; Group III: incubated in M199 containing 200 µmol/L sodium selenite and 500 µmol/L danshensu. Selenite was administered on the third day, and danshensu treatment was from the second to the fifth day. Cataracts development was observed using an inverted microscope, and the lenses were analysed for total anti-oxidative capabilities, mean activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione S-transferase; levels of reduced glutathione; malondialdehyde; and total sulfhydryl content. RESULTS All lenses in Group I were clear, whereas all lenses in Group II developed dense vacuolization and opacification. In Group III, 25% lenses revealed minimal vacuolization, and 75% showed no opacification or vacuolization. Total anti-oxidative capabilities and the mean activities of anti-oxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione S-transferase; levels of glutathione; and total sulfhydryl content were elevated, and the level of malondialdehyde was decreased following treatment with danshensu compared with Group II. CONCLUSION The anti-oxidative properties of danshensu may play a major role in its contribution to the anticataract effect.
Collapse
Affiliation(s)
- Hui-Ping Qi
- Departments of Ophthalmology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | | | | | | | | | | | | |
Collapse
|