1
|
Chaubal TV, Ywen BS, Ying Ying T, Bapat R. Clinical and microbiologic effect of local application of curcumin as an adjunct to scaling and root planing in periodontitis: Systematic review. Ir J Med Sci 2024; 193:1985-1994. [PMID: 38376640 DOI: 10.1007/s11845-024-03635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND The main aim of periodontal therapy is to halt the progression of periodontitis. Curcumin, one of the main components of Curcumin longa, has been well known to possess antimicrobial, anti-inflammatory, and even anticarcinogenic properties. This systematic review assessed the impact of local application of curcumin in the pocket on the clinical and microbiologic parameters as an adjunct to scaling and root planing in periodontitis patients. METHODS The electronic literature search retrieved 61 studies from PubMed, MEDLINE, and ScienceDirect. After screening titles, abstracts, and keywords and reading through these articles, we identified 9 articles meeting all inclusion criteria, which were included for systematic review. RESULTS There was a significant difference in both clinical parameters in a short duration of a month after curcumin chips were placed as an adjunct to scaling and root planing as compared to the control. Local application of curcumin also results in slight to significant reduction in the red complex microorganisms. CONCLUSION This review suggested that local application of curcumin can be considered as a viable adjunct to mechanical debridement in periodontitis. However, further studies need to be conducted to establish its optimum dose, delivery method, and frequency in achieving the best clinical outcomes.
Collapse
Affiliation(s)
- Tanay V Chaubal
- Division of Restorative Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia.
- Present address: OU College of Dentistry, 1201 North Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Bee Swen Ywen
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Ting Ying Ying
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Ranjeet Bapat
- Division of Restorative Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Wenzler JS, Wurzel SC, Falk W, Böcher S, Wurzel PP, Braun A. Bactericidal Effect of Different Photochemical-Based Therapy Options on Implant Surfaces-An In Vitro Study. J Clin Med 2024; 13:4212. [PMID: 39064253 PMCID: PMC11278127 DOI: 10.3390/jcm13144212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Objectives: Photochemical systems are frequently recommended as an adjuvant treatment option in peri-implantitis therapy. The aim of the present study was to evaluate the efficacy of these treatment options, as well as a novel curcumin-based option, in a biofilm model on implants. Methods: Eighty dental implants were inoculated with an artificial biofilm of periodontal pathogens and placed in peri-implant pocket models. The following groups were analyzed: I, photodynamic therapy (PDT); II, PDT dye; III, curcumin/DMSO + laser; IV, curcumin/DMSO only; V, dimethyl sulfoxide (DMSO) only; VI, photothermal therapy (PTT); VII, PTT dye; VIII, control. After treatment, remaining bacterial loads were assessed microbiologically using quantitative real-time polymerase chain reaction analysis. Results: The PDT, PTT, and DMSO treatment methods were associated with statistically significant (p < 0.05) improvements in germ reduction in comparison with the other methods and the untreated control group. The mean percentage reductions were as follows: I (PDT) 93.9%, II (PDT dye) 62.9%, III (curcumin/DMSO + laser) 74.8%, IV (curcumin/DMSO only) 67.9%, V (DMSO) 89.4%, VI (PTT) 86.8%, and VII (PTT dye) 66.3%. Conclusions: The commercially available PDT and PTT adjuvant treatment systems were associated with the largest statistically significant reduction in periopathogenic bacteria on implant surfaces. However, activation with laser light at a suitable wavelength is necessary to achieve the bactericidal effects. The use of curcumin as a photosensitizer for 445 nm laser irradiation did not lead to any improvement in antibacterial efficacy in comparison with rinsing with DMSO solution alone.
Collapse
Affiliation(s)
- Johannes-Simon Wenzler
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| | - Svenja Caroline Wurzel
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| | - Wolfgang Falk
- Center for Dental Microbiology, Oro-Dental Microbiology, Hamburger Chausse 25, 24220 Flintbek, Germany
| | - Sarah Böcher
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| | - Piet Palle Wurzel
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| | - Andreas Braun
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| |
Collapse
|
3
|
Radu CM, Radu CC, Arbănaşi EM, Hogea T, Murvai VR, Chiș IA, Zaha DC. Exploring the Efficacy of Novel Therapeutic Strategies for Periodontitis: A Literature Review. Life (Basel) 2024; 14:468. [PMID: 38672739 PMCID: PMC11050937 DOI: 10.3390/life14040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Periodontitis, a prevalent oral condition, is facing difficulties in therapeutic approaches, sometimes leading to failure. This literature review was conducted to investigate the diversity of other therapeutic approaches and their potential contributions to the successful management of the disease. This research scrutinized the alterations in microbial diversity and imbalances in crucial microbial species, which contribute significantly to the pathogenesis of periodontitis. Within the limitations of this study, we highlight the importance of understanding the treatment plan's role in periodontitis disease, opening the way for further research and innovative treatment plans to mitigate the impact of periodontitis on oral health. This will aid both healthcare professionals and patients in preventing and effectively treating periodontitis, ultimately improving oral health outcomes and overall systemic health and well-being.
Collapse
Affiliation(s)
- Casandra-Maria Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
| | - Carmen Corina Radu
- Department of Forensic Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania
- Institute of Forensic Medicine, 540141 Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Emil-Marian Arbănaşi
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Vascular Surgery, Mureș County Emergency Hospital, 540136 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania
| | - Timur Hogea
- Department of Forensic Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania
- Institute of Forensic Medicine, 540141 Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Viorela Romina Murvai
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1 December Sq, 410028 Oradea, Romania
| | - Ioana-Andreea Chiș
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania
| | - Dana Carmen Zaha
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1 December Sq, 410028 Oradea, Romania
| |
Collapse
|
4
|
Liu C, Chen Y, Bai H, Niu Y, Wu Y. Characterization and application of in situ curcumin/ZNP hydrogels for periodontitis treatment. BMC Oral Health 2024; 24:395. [PMID: 38549147 PMCID: PMC10976734 DOI: 10.1186/s12903-024-04054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/20/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease that occurs in tooth-supporting tissues. Controlling inflammation and alleviating periodontal tissue destruction are key factors in periodontal therapy. This study aimed to develop an in situ curcumin/zinc oxide (Cur/ZNP) hydrogel and investigate its characteristics and effectiveness in the treatment of periodontitis. METHODS Antibacterial activity and cytotoxicity assays were performed in vitro. To evaluate the effect of the in situ Cur/ZNP hydrogel on periodontitis in vivo, an experimental periodontitis model was established in Sprague‒Dawley rats via silk ligature and inoculation of the maxillary first molar with Porphyromonas gingivalis. After one month of in situ treatment with the hydrogel, we examined the transcriptional responses of the gingiva to the Cur/ZNP hydrogel treatment and detected the alveolar bone level as well as the expression of osteocalcin (OCN) and osteoprotegerin (OPG) in the periodontal tissues of the rats. RESULTS Cur/ZNPs had synergistic inhibitory effects on P. gingivalis and good biocompatibility. RNA sequencing of the gingiva showed that immune effector process-related genes were significantly induced by experimental periodontitis. Carcinoembryonic antigen-related cell adhesion molecule 1 (Ceacam1), which is involved in the negative regulation of bone resorption, was differentially regulated by the Cur/ZNP hydrogel but not by the Cur hydrogel or ZNP hydrogel. The Cur/ZNP hydrogel also had a stronger protective effect on alveolar bone resorption than both the Cur hydrogel and the ZNP hydrogel. CONCLUSION The Cur/ZNP hydrogel effectively inhibited periodontal pathogenic bacteria and alleviated alveolar bone destruction while exhibiting favorable biocompatibility.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Ying Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Huimin Bai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Yulong Niu
- College of Life Science, Sichuan University, No.24, 1st South Section, Yihuan Road, Chengdu, 610065, Sichuan, China.
| | - Yafei Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Agrawal A, Sharma AR, Rathod V, Bhatnagar A, Amol Khale P, Tidke P, Mehta D, Mazumder D. Assessment of the Efficiency of Tulsi Extract as a Locally Administered Medication Agent and Its Comparison With Curcumin in the Treatment of Periodontal Pockets. Cureus 2024; 16:e54619. [PMID: 38523946 PMCID: PMC10959213 DOI: 10.7759/cureus.54619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/26/2024] Open
Abstract
INTRODUCTION The use of locally administered medication (LAM) agents such as minocycline, metronidazole, and tetracycline as antimicrobials has drawbacks, including the development of microorganism resistance, exorbitant pricing, and limited accessibility. Thus, there is a need for safer and more affordable alternatives. Numerous natural therapies have been found to be superior in this situation. In this study, the efficacy of tulsi extract as a LAM agent was assessed and it was compared with curcumin, which is currently used for the treatment of periodontal pockets. METHODS AND MATERIALS There were three categories: each category had 30 sites. Category 1 sites underwent scaling along with root planing (SRP) solely, Category 2 sites received curcumin extract as LAM in the periodontal pocket in addition to SRP, and Category 3 sites received tulsi extract as LAM in the periodontal pocket in addition to SRP. The stent was used to ensure consistent and unbiased measurements on the 30th day after treatment. Clinical attachment level (CAL) and probing pocket depth (PPD) were measured at six points around each tooth. Results: The reduction in values of periodontal parameters such as BAPNA (Nα-benzoyl-DL-arginine-p-nitroanilide) assays, modified sulcus bleeding index (mSBI), gingival index (GI), plaque index (PI), CAL, and PPD in sites within Category 1, Category 2, and Category 3 was statistically significant. The decrease in BAPNA assay results indicates that tulsi extract is more effective than curcumin gel at eradicating red-complex bacteria. Although not significantly different, the decrease in PI and GI was observed to be greater when curcumin jelly was used. This suggests that curcumin jelly has a stronger impact on reducing plaque, which in turn decreases gingival inflammation. CONCLUSION Based on the overall results of the study, it can be said that both tulsi and curcumin have similar effectiveness in reducing periodontal markers.
Collapse
Affiliation(s)
- Ankita Agrawal
- Department of Conservative Dentistry and Endodontics, Buddha Institute of Dental Sciences and Hospital, Patna, IND
| | - Anant Ragav Sharma
- Department of Periodontics, Pacific Dental College and Hospital, Udaipur, IND
| | - Varsha Rathod
- Department of Periodontology, Dr. D. Y. (Dnyandeo Yashwantrao) Patil School of Dentistry, Navi Mumbai, IND
| | - Anand Bhatnagar
- Department of Periodontics, Jaipur Dental College, Jaipur, IND
| | - Pallavi Amol Khale
- Department of Dentistry, Rajiv Gandhi Medical College and Chhatrapati Shivaji Maharaj Hospital, Thane, IND
| | - Priyanka Tidke
- Department of Oral Medicine and Radiology, MGM (Mahatma Gandhi Mission) Dental College and Hospital, Navi Mumbai, IND
| | - Dhaval Mehta
- Department of Oral Medicine and Radiology, Narsinbhai Patel Dental College and Hospital, Sankalchand Patel University, Visnagar, IND
| | - Debojyoti Mazumder
- Department of Conservative Dentistry and Endodontics, Kusum Devi Sunderlal Dugar Jain Dental College and Hospital, Kolkata, IND
| |
Collapse
|
6
|
Abdel-Fatah R, Mowafey B, Baiomy A, Elmeadawy S. Efficacy of curcumin gel as an adjunct to scaling and root planing on salivary procalcitonin level in the treatment of patients with chronic periodontitis: a randomized controlled clinical trial. BMC Oral Health 2023; 23:883. [PMID: 37981665 PMCID: PMC10658924 DOI: 10.1186/s12903-023-03512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023] Open
Abstract
THE AIM OF THE STUDY To evaluate the effect of curcumin gel combined with scaling and root planing (SRP) on salivary procalcitonin in periodontitis treatment. MATERIALS AND METHODS seventy patients were selected from the Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mansoura University, and sixteen patients were excluded. Patients in groups II and III included stage II grade A periodontitis. The participants were classified into three groups: group I as a negative control group (individuals with healthy gingiva), group II (SRP) were treated with SRP, and group III (curcumin gel) which was applied weekly for four weeks after SRP. Clinical indices (plaque index (PI), gingival index (GI), clinical attachment level (CAL), and probing depth (PD)) and saliva samples for procalcitonin (PCT) assessment using an enzyme-linked immunosorbent assay (ELISA) test were collected and measured at both baselines and after six weeks. RESULTS This randomized controlled clinical trial registered on ClinicalTrials.gov (NCT05667376) and first posted at 28/12/2022 included Fifty-four patients (20 male; 34 female). Regarding the age and sex distribution, there was no statistically significant difference between the three studied groups (p > 0.05). There was no significant statistical difference regarding PI, GI, PPD, and CAL between group II and group III at baseline p (> 0.05). However, there was a significant statistical difference regarding the clinical parameters at baseline of both group II and group III as compared to group I (p ≤ 0.05). At six weeks after treatment, group III showed greater improvement in the PI, PD, and CAL as opposed to group II (p ≤ 0.05). Regarding PCT values, at baseline, there wasn't a statistically significant difference between group II and group III (p > 0.05). However, there was a significant statistical difference between group II, group III, and group I (p ≤ 0.05). At six weeks after treatment, there was a statistically significant decrease in PCT levels of both group II and III (p ≤ 0.05). CONCLUSION The application of curcumin gel was found to have a significant effect on all clinical indices as opposed to SRP.
Collapse
Affiliation(s)
- Reham Abdel-Fatah
- Oral Medicine, Periodontology, Diagnosis, and Oral Radiology Department, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt.
| | - Bassant Mowafey
- Oral Medicine, Periodontology, Diagnosis, and Oral Radiology Department, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt
| | - Azza Baiomy
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Samah Elmeadawy
- Oral Medicine, Periodontology, Diagnosis, and Oral Radiology Department, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Viglianisi G, Santonocito S, Lupi SM, Amato M, Spagnuolo G, Pesce P, Isola G. Impact of local drug delivery and natural agents as new target strategies against periodontitis: new challenges for personalized therapeutic approach. Ther Adv Chronic Dis 2023; 14:20406223231191043. [PMID: 37720593 PMCID: PMC10501082 DOI: 10.1177/20406223231191043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/07/2023] [Indexed: 09/19/2023] Open
Abstract
Periodontitis is a persistent inflammation of the soft tissue around the teeth that affects 60% of the population in the globe. The self-maintenance of the inflammatory process can cause periodontal damage from the alveolar bone resorption to tooth loss in order to contrast the effects of periodontitis, the main therapy used is scaling and root planing (SRP). At the same time, studying the physiopathology of periodontitis has shown the possibility of using a local drug delivery system as an adjunctive therapy. Using local drug delivery devices in conjunction with SRP therapy for periodontitis is a potential tool since it increases drug efficacy and minimizes negative effects by managing drug release. This review emphasized how the use of local drug delivery agents and natural agents could be promising adjuvants for the treatment of periodontitis patients affected or not by cardiovascular disease, diabetes, and other system problems. Moreover, the review evidences the current issues and new ideas that can inspire potential later study for both basic research and clinical practice for a tailored approach.
Collapse
Affiliation(s)
- Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Saturnino Marco Lupi
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Naples, Italy
| | - Paolo Pesce
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Via Santa Sofia 78, Catania 95123, Italy
| |
Collapse
|
8
|
Omidian H, Wilson RL, Chowdhury SD. Enhancing Therapeutic Efficacy of Curcumin: Advances in Delivery Systems and Clinical Applications. Gels 2023; 9:596. [PMID: 37623051 PMCID: PMC10453486 DOI: 10.3390/gels9080596] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Curcumin, a potent active compound found in turmeric and Curcuma xanthorrhiza oil, possesses a wide range of therapeutic properties, including antibacterial, anti-inflammatory, antioxidant, and wound healing activities. However, its clinical effectiveness is hindered by its low bioavailability and rapid elimination from the body. To overcome these limitations, researchers have explored innovative delivery systems for curcumin. Some promising approaches include solid lipid nanoparticles, nanomicelle gels, and transdermal formulations for topical drug delivery. In the field of dentistry, curcumin gels have shown effectiveness against oral disorders and periodontal diseases. Moreover, Pickering emulsions and floating in situ gelling systems have been developed to target gastrointestinal health. Furthermore, curcumin-based systems have demonstrated potential in wound healing and ocular medicine. In addition to its therapeutic applications, curcumin also finds use as a food dye, contraception aid, corrosion-resistant coating, and environmentally friendly stain. This paper primarily focuses on the development of gel compositions of curcumin to address the challenges associated with its clinical use.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (S.D.C.)
| | | | | |
Collapse
|
9
|
Mosaddad SA, Hussain A, Tebyaniyan H. Green Alternatives as Antimicrobial Agents in Mitigating Periodontal Diseases: A Narrative Review. Microorganisms 2023; 11:1269. [PMCID: PMC10220622 DOI: 10.3390/microorganisms11051269] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Periodontal diseases and dental caries are the most common infectious oral diseases impacting oral health globally. Oral cavity health is crucial for enhancing life quality since it serves as the entranceway to general health. The oral microbiome and oral infectious diseases are strongly correlated. Gram-negative anaerobic bacteria have been associated with periodontal diseases. Due to the shortcomings of several antimicrobial medications frequently applied in dentistry, the lack of resources in developing countries, the prevalence of oral inflammatory conditions, and the rise in bacterial antibiotic resistance, there is a need for reliable, efficient, and affordable alternative solutions for the prevention and treatment of periodontal diseases. Several accessible chemical agents can alter the oral microbiota, although these substances also have unfavorable symptoms such as vomiting, diarrhea, and tooth discoloration. Natural phytochemicals generated from plants that have historically been used as medicines are categorized as prospective alternatives due to the ongoing quest for substitute products. This review concentrated on phytochemicals or herbal extracts that impact periodontal diseases by decreasing the formation of dental biofilms and plaques, preventing the proliferation of oral pathogens, and inhibiting bacterial adhesion to surfaces. Investigations examining the effectiveness and safety of plant-based medicines have also been presented, including those conducted over the past decade.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Hamid Tebyaniyan
- Science and Research Branch, Islimic Azade University, Tehran 14878-92855, Iran
| |
Collapse
|
10
|
Solomon SM, Stafie CS, Sufaru IG, Teslaru S, Ghiciuc CM, Petrariu FD, Tanculescu O. Curcumin as a Natural Approach of Periodontal Adjunctive Treatment and Its Immunological Implications: A Narrative Review. Pharmaceutics 2022. [DOI: https:/doi.org/10.3390/pharmaceutics14050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Scaling and root planing represent the gold standard in the treatment of periodontal disease, but these therapeutic methods cannot eliminate the remaining periodontopathogenic bacteria in cement, tubules, and periodontal soft tissue. Thus, a number of additional therapeutic means have been adopted, including local and systemic antibiotic therapy, as well as the use of photodynamic therapy techniques. Recently, special attention has been paid to potential phytotherapeutic means in the treatment of periodontal disease. In this review, we aim to present the effects generated by the extract of Curcuma longa, the various forms of application of turmeric as an additional therapeutic means, as well as the aspects related to its biotolerance.
Collapse
|
11
|
Curcumin as a Natural Approach of Periodontal Adjunctive Treatment and Its Immunological Implications: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14050982. [PMID: 35631567 PMCID: PMC9143680 DOI: 10.3390/pharmaceutics14050982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022] Open
Abstract
Scaling and root planing represent the gold standard in the treatment of periodontal disease, but these therapeutic methods cannot eliminate the remaining periodontopathogenic bacteria in cement, tubules, and periodontal soft tissue. Thus, a number of additional therapeutic means have been adopted, including local and systemic antibiotic therapy, as well as the use of photodynamic therapy techniques. Recently, special attention has been paid to potential phytotherapeutic means in the treatment of periodontal disease. In this review, we aim to present the effects generated by the extract of Curcuma longa, the various forms of application of turmeric as an additional therapeutic means, as well as the aspects related to its biotolerance.
Collapse
|
12
|
Zussman M, Zilberman M. Injectable metronidazole-eluting gelatin-alginate hydrogels for local treatment of periodontitis. J Biomater Appl 2022; 37:166-179. [PMID: 35341363 DOI: 10.1177/08853282221079458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Infection of the periodontal pocket presents two major challenges for drug delivery: administration into the periodontal pocket and a high fluid clearance rate in the pocket. The current study aimed to develop and study a novel hydrogel system for delivery of the antibiotic drug metronidazole directly into the periodontal pocket via injection followed by in situ gelation. The natural polymers gelatin and alginate served as basic materials, and their crosslinking using a carbodiimide resulted in a dual hydrogel network. The study focused on the effects of the hydrogel's formulation parameters on the drug release profile and the hydrogel's physical and mechanical properties. A cell viability test was conducted on human fibroblasts. The metronidazole-loaded hydrogels demonstrated a decreasing release rate with time, where most of the drug eluted within 24 h. These hydrogels exhibited fibroblast viability of at least 75% after 24 and 48 h, indicating that they are highly biocompatible. Although the alginate concentration used in this study was relatively low, it had a strong effect on the physical as well as the mechanical properties of the hydrogel. An increase in the alginate concentration increased the crosslinking rate and enabled enhanced entanglement of the 3D structure, resulting in a decrease in the gelation time (less than 10 s) and swelling degree, which are both desired for the studied periodontal application. Increasing the gelatin concentration without changing the crosslinker concentration resulted in significant changes in the physical properties and slight changes in the mechanical properties. Metronidazole incorporation slightly decreased the hydrophilicity of the hydrogel and therefore also its viscosity, and affected the sealing ability and the tensile and compression moduli. The developed hydrogels exhibited controllable mechanical and physical properties, can target a wide range of conditions, and are therefore of high significance in the field of periodontal treatment.
Collapse
Affiliation(s)
- Merav Zussman
- Department of Materials Science and Engineering, 99050Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Meital Zilberman
- Department of Biomedical Engineering, 99050Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Poppolo Deus F, Ouanounou A. Chlorhexidine in Dentistry: Pharmacology, Uses, and Adverse Effects. Int Dent J 2022; 72:269-277. [PMID: 35287956 PMCID: PMC9275362 DOI: 10.1016/j.identj.2022.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/14/2021] [Accepted: 01/29/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives The aim of this work was to review the current uses of chlorhexidine (CHX) in dentistry based on its mechanism of action, whilst highlighting the most effective protocols that render the highest clinical efficacy whilst limiting adverse drug reactions. Methods A literature search was conducted using the key words chlorhexidine, mechanism of action, adverse effects, and dentistry using databases in the University of Toronto library system. The titles and abstracts were read, and relevant articles were selected. Results A total of 1100 publications were identified, 100 were investigated, and 67 of them were used. Out of the 67 selected articles, 12 were reviews on CHX; 5 articles focussed on CHX gels; 13 focussed on CHX mouthwashes; 8 focussed on CHX products; 13 discussed adverse effects associated with CHX; 13 focussed on periodontal pathology and treatment; 6 focussed on implant periodontal and dental surgeries; 7 evaluated effects on caries; 6 looked at the mechanisms of action; and 12 focussed on the antibacterial and antimicrobial impact on the oral biome. There were multiple areas of overlap amongst the articles, and results showed that CHX provides different uses, but mainly as an adjunct to various treatments. Mouthwash was the most superior medium when used in short time spans when mechanical prophylaxis was not possible for the prevention of gingivitis and maintenance of oral hygiene. CHX products are often used in periodontics, post–oral surgical procedures, and as a prophylaxis for multiple invasive procedures with minimal adverse effects. Tooth staining was the most negative adverse effect reported by patients. Conclusions CHX's antimicrobial properties make it an ideal prophylactic when mechanical debridement is not possible. CHX mouthwash appears to be more effective compared to gels. Concentrations of 0.12% to 0.2% are recommended; any mouthwash with concentrations above 0.2% will unnecessarily increase the unwanted side effects. CHX is useful amongst various areas of dentistry including oral surgery, periodontics, and even general dentistry. For long-term treatments, especially in periodontitis patients (stage I-III) undergoing nonsurgical treatments, CHX chips are recommended. CHX chips are also recommended as an adjunct to implant debridement in patients with peri-implant mucositis and peri-implantitis over CHX mouthwash and gels.
Collapse
|
14
|
The Effects of Nutraceuticals and Bioactive Natural Compounds on Chronic Periodontitis: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:59-80. [PMID: 34981471 DOI: 10.1007/978-3-030-73234-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The paper aims to review the current clinical evidence of various herbal agents as an adjunct treatment in the management of chronic periodontitis patients. Gingivitis and periodontitis are two common infectious inflammatory diseases of the supporting tissues of the teeth and have a multifactorial etiology. An important concern about chronic periodontitis is its association with certain systemic disease. New treatment strategies for controlling the adverse effects of chronic periodontitis have been extensively assessed and practiced in sub-clinical and clinical studies. It has been shown that the phytochemical agents have various therapeutic properties such as anti-inflammatory and antibacterial effects which can be beneficial for the treatment of periodontitis. The findings of this review support the adjunctive use of herbal agents in the management of chronic periodontitis. Heterogeneity and limited data may reduce the impact of these conclusions. Future long-term randomized controlled trials evaluating the clinical efficacy of adjunctive herbal therapy to scaling and root planing are needed.
Collapse
|
15
|
Vinel A, Al Halabi A, Roumi S, Le Neindre H, Millavet P, Simon M, Cuny C, Barthet JS, Barthet P, Laurencin-Dalicieux S. Non-surgical Periodontal Treatment: SRP and Innovative Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:303-327. [DOI: 10.1007/978-3-030-96881-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Terby S, Shereef M, Ramanarayanan V, Balakrishnan B. The effect of curcumin as an adjunct in the treatment of chronic periodontitis: A systematic review and meta-analysis. Saudi Dent J 2021; 33:375-385. [PMID: 34803277 PMCID: PMC8589622 DOI: 10.1016/j.sdentj.2021.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 06/04/2021] [Accepted: 07/04/2021] [Indexed: 12/18/2022] Open
Abstract
Background A large number of trials has been conducted using curcumin as the main ingredient in mouth rinses, topical oral gel, subgingival irrigant, locally delivered gel and locally delivered chips to reduce gingival inflammation and probing pocket depth. However, the results of these trials vary and are debatable. Objective To evaluate the effectiveness of oral curcumin products as compared to the routinely used ones in reducing gingival inflammation and probing pocket depth in adults. Methods Electronic databases such as Pubmed/Medline and Cochrane Library and hand searching was done for randomised controlled trials (RCTs), which yielded 148 results, of which 27 RCTs compared curcumin products with routinely used ones. Meta-analysis was conducted to check for plaque reduction, gingival inflammation and pocket depth. Results 963 participants in the 27 RCT studies were considered for a systematic review. We found that for a long-term evaluation of probing pocket depth in nine studies each with 400 participants, there was a statistically significant difference in the reduction when curcumin topical gel was used as compared with the control [SMD −0.87, 95% CI: −1.31 to −0.43]. However, in the evaluation of short-term plaque and gingival scores, we found no statistically significant differences in the reduction when curcumin mouth rinse was used [SMD −0.76, 95% CI: −2.25 to 0.73] and [MD: −0.09, 95% CI: −0.29 to 0.10]. Conclusion Curcumin topical and local delivery gel, mouth rinses and sub-gingival irrigants were found to be equally effective compared to the routinely used agents for reduction of plaque and gingival inflammation. Curcumin local delivery gel had greater reduction in probing pocket depth.
Collapse
Affiliation(s)
- Sherry Terby
- Department of Periodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, AIMS, Ponekkara PO, Kochi 682041, Kerala, India
| | - Mohammed Shereef
- Department of Periodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, AIMS, Ponekkara PO, Kochi 682041, Kerala, India.,Department of Public Health Dentistry, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - Biju Balakrishnan
- Department of Periodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, AIMS, Ponekkara PO, Kochi 682041, Kerala, India
| |
Collapse
|
17
|
Zhang Y, Huang L, Mazurel D, Zheng H, Yang J, Deng D. Clinical efficacy of curcumin versus chlorhexidine as an adjunct to scaling and root planing for the treatment of periodontitis: A systematic review and meta-analysis. Phytother Res 2021; 35:5980-5991. [PMID: 34216058 DOI: 10.1002/ptr.7208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 02/05/2023]
Abstract
This study aims to evaluate the clinical efficacy of curcumin versus chlorhexidine as adjuncts to scaling and root planing (SRP) for periodontitis treatment. We searched PubMed, EMbase, Cochrane Library, and ClinicalTrials.gov from inception to February 18, 2021 and identified studies with relevant randomized controlled trials (RCTs) using curcumin or chlorhexidine as an adjunct to SRP. Nine RCTs involving 420 patients/sites were included. A meta-analysis with a random-effects model revealed that curcumin and chlorhexidine, as an adjunct to SRP, reduced probing pocket depth (PPD) at similar levels during a 3-, 4-, 6-, and 12-week follow-up. No significant differences were observed in reducing clinical attachment loss (CAL) between curcumin and chlorhexidine as an adjunct to SRP at 4 weeks and 6 weeks. Furthermore, gingival index (GI) and plaque index (PI) were similar using curcumin versus chlorhexidine as an adjunct to SRP at the 4-week-, 6-week-, and 12-week follow-up. Based on the available evidence in RCTs, compared with chlorhexidine as an adjunct to SRP, curcumin has a similar effect on reducing PPD, CAL, GI, and PI. The quality of evidence is low, limited by the number of studies and their limitations. Further studies are needed to firmly establish the clinical efficacy of curcumin.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Danuta Mazurel
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hanhua Zheng
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingmei Yang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Li Y, Jiao J, Qi Y, Yu W, Yang S, Zhang J, Zhao J. Curcumin: A review of experimental studies and mechanisms related to periodontitis treatment. J Periodontal Res 2021; 56:837-847. [PMID: 34173676 DOI: 10.1111/jre.12914] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is the main active ingredient of turmeric, which has a wide range of pharmacological effects, including antitumor, antibacterial, anti-inflammatory, anti-oxidation, immune regulation, and so on. Periodontitis is a prevalent oral inflammatory disease caused by a variety of factors. In recent years, many studies have shown that curcumin has a potential role on the treatment of periodontitis. Curcumin has been used in research related to the treatment of periodontitis in the form of solution, chip, gel, and capsule. Combined with other periodontitis treatment methods, such as scaling and root planing (SRP) and photodynamic therapy (PDT), can enhance curcumin's efficacy in treating periodontitis. In addition to natural curcumin, chemically modified curcumin, such as 4-phenylaminocarbonyl bis-demethoxy curcumin (CMC 2.24) and 4-methoxycarbonyl curcumin (CMC 2.5), have also been used in animal models of periodontitis. Here, this paper reviews the research progress of curcumin on the treatment of periodontitis and its related mechanisms.
Collapse
Affiliation(s)
- Yongli Li
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Junjie Jiao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanzheng Qi
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Wanqi Yu
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Shihui Yang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingjie Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Jinghui Zhao
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
19
|
Efficacy of Curcumin Gel on Zinc, Magnesium, Copper, IL-1 β, and TNF- α in Chronic Periodontitis Patients. BIOMED RESEARCH INTERNATIONAL 2021; 2020:8850926. [PMID: 33083489 PMCID: PMC7559506 DOI: 10.1155/2020/8850926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/16/2022]
Abstract
Curcumin exhibits antibacterial, antioxidant, and anti-inflammatory effects and has been suggested as a treatment for inflammatory diseases. The study is aimed at evaluating the effect of curcumin gel on serum levels of micronutrients (zinc, copper, and magnesium) and proinflammatory cytokines (IL-1β and TNF-α) in chronic periodontitis patients. Ninety subjects with an age of 25-54 were included in this study. From the total number, 30 subjects with healthy periodontium (control group) (mean age = 37.30 ± 7.08) were employed for the sole purpose of obtaining the normal mean values of clinical, chemical, and immunological parameters, and 60 with chronic periodontitis (mean age = 36.73 ± 6.22) were divided randomly into 2 groups, of which each group included 30 subjects. Group A received scaling and root planing SRP and curcumin gel injection covered by Coe pack for 7 days, and group B received SRP alone covered by Coe pack. Clinical parameters (plaque index, gingival index, bleeding on probing, pocket depth, and clinical attachment loss measurements) and blood samples were collected before and after 1 month of treatment to measure serum levels of zinc, copper, magnesium, IL-1β, and TNF-α. The results showed significant micronutrient alteration and increase of proinflammatory cytokines in the chronic periodontitis group as compared to healthy control (P ≤ 0.05), and curcumin gel had a significant effect on the reduction of IL-1β, TNF-α, copper, and clinical parameters (P ≤ 0.05) and increase of zinc and magnesium levels after 1 month as compared to baseline (P ≤ 0.05), nearly the same pattern for group B but with nonsignificant differences for Zn (P > 0.05). In conclusion, curcumin gel resulted in a more significant reduction in clinical parameters, inflammatory mediators, and copper and increase of zinc and magnesium levels as compared to SRP alone.
Collapse
|
20
|
Rahalkar A, Kumathalli K, Kumar R. Determination of efficacy of curcumin and Tulsi extracts as local drugs in periodontal pocket reduction: A clinical and microbiological study. J Indian Soc Periodontol 2021; 25:197-202. [PMID: 34158685 PMCID: PMC8177171 DOI: 10.4103/jisp.jisp_158_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/18/2020] [Accepted: 09/15/2020] [Indexed: 11/25/2022] Open
Abstract
Background: The aim of our study is to assess the effectiveness of Curcumin and Tulsi in the control of periodontal parameters when delivered in the form of local drug delivery (LDD) agents. Methods: Curenext gel® and Tulsi gel were used as the two LDD agent. A split mouth randomized clinical trial was carried out in 15 patients. Three sites in different quadrants were assigned treatment modality of scaling and root planing (SRP) alone, SRP with LDD of curcumin and SRP with LDD of Tulsi extract, respectively. Clinical parameters Probing Pocket Depth, Clinical Attachment Level, Plaque Index, Gingival Index, and modified Sulcus Bleeding Index were recorded and subgingival plaque sample collected for N-benzoyl-L-arginine-p-nitroanilide (BAPNA) assay on baseline followed by LDD with extracts in the assigned group. The parameters were recorded at baseline and on 30th day postoperatively. Unpaired and Paired-'t' test were used for intergroup and intragroup comparison of recorded clinical and microbiological parameters. Results: All the treatment modalities showed statistically significant reduction in clinical and microbiological parameters on intragroup comparison. Intergroup comparison showed statistically significant reduction in Plaque Index in curcumin group and BAPNA assay in Tulsi group when compared to SRP. Conclusion: Both the herbs were effective in improving periodontal parameters and may develop as an alternative to currently used LDD agents in near future.
Collapse
Affiliation(s)
- Apurva Rahalkar
- Department of Periodontics, Sri Aurobindo College of Dentistry, Indore, Madhya Pradesh, India
| | - Kanteshwari Kumathalli
- Department of Periodontics, Sri Aurobindo College of Dentistry, Indore, Madhya Pradesh, India
| | - Rajesh Kumar
- Department of Periodontics, Sri Aurobindo College of Dentistry, Indore, Madhya Pradesh, India
| |
Collapse
|
21
|
Girisa S, Kumar A, Rana V, Parama D, Daimary UD, Warnakulasuriya S, Kumar AP, Kunnumakkara AB. From Simple Mouth Cavities to Complex Oral Mucosal Disorders-Curcuminoids as a Promising Therapeutic Approach. ACS Pharmacol Transl Sci 2021; 4:647-665. [PMID: 33860191 PMCID: PMC8033761 DOI: 10.1021/acsptsci.1c00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 02/08/2023]
Abstract
Oral diseases are among the most common encountered health issues worldwide, which are usually associated with anomalies of the oral cavity, jaws, and salivary glands. Despite the availability of numerous treatment modalities for oral disorders, a limited clinical response has been observed because of the inefficacy of the drugs and countless adverse side effects. Therefore, the development of safe, efficacious, and wide-spectrum therapeutics is imperative in the battle against oral diseases. Curcumin, extracted from the golden spice turmeric, is a well-known natural polyphenol that has been extensively studied for its broad pleiotropic attributes and its ability to modulate multiple biological processes. It is well-documented to target pro-inflammatory mediators like NF-κB, ROS, COX-2, IL-1, IL-2, TGF-β, growth factors, apoptotic proteins, receptors, and various kinases. These properties make curcumin a promising nutraceutical in the treatment of many oral diseases like oral submucous fibrosis, oral mucositis, oral leukoplakia, oral erythroplakia, oral candidiasis, aphthous stomatitis, oral lichen planus, dental caries, periodontitis, and gingivitis. Numerous in vitro and in vivo studies have shown that curcumin alleviates the symptoms of most of the oral complications, including the inhibition of the progression of oral cancer. In this regard, many clinical trials have been completed, and many are ongoing to investigate the "curcumin effect" in oral maladies. Therefore, the current review delineates the mechanistic framework of curcumin's propensity in curbing oral diseases and present outcomes of the clinical trials of curcumin-based therapeutics that can provide a breakthrough in the clinical management of these diseases.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Aviral Kumar
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Uzini Devi Daimary
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Saman Warnakulasuriya
- Department
of Oral Medicine, King’s College
London and WHO Collaborating Centre for Oral Cancer and Precancer, London WC2R 2LS, United Kingdom
| | - Alan Prem Kumar
- Medical
Science Cluster, Cancer Translational Research Programme, Yong Loo
Lin School of Medicine, National University
of Singapore, Singapore 117600, Singapore
- Cancer
Science Institute of Singapore, National
University of Singapore, Singapore 117600, Singapore
- National
University Cancer Institute, National University
Health Systems, Singapore 117600, Singapore
| | - Ajaikumar B. Kunnumakkara
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
22
|
Souza EQM, da Rocha TE, Toro LF, Guiati IZ, Freire JDOA, Ervolino E, Brandini DA, Garcia VG, Theodoro LH. Adjuvant effects of curcumin as a photoantimicrobial or irrigant in the non-surgical treatment of periodontitis: Systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2021; 34:102265. [PMID: 33781908 DOI: 10.1016/j.pdpdt.2021.102265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/16/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
AIM Curcumin (CUR) has been used clinically in several studies as a subgingival irrigant or as a photoantimicrobial in combination with a blue light-emitting diode (LED) in antimicrobial photodynamic therapy (aPDT) adjuvant to scaling and root planing (SRP). The aim of this study was to assess the effectiveness of CUR as an irrigant or as a photoantimicrobial in conjunction with the blue LED in aPDT adjuvant to SRP, compared to SRP as conventional mechanical treatment. MATERIALS AND METHODS Fifteen randomized controlled trials (RCT) were included in a qualitative analysis after researching the databases: PubMed / MEDLINE, SCOPUS, EMBASE, Cochrane Central, Web of Science and Scielo. Manual searches were also performed. Five studies were submitted to quantitative analysis, evaluating periodontal clinical parameters such as probing depth (PD) and clinical attachment level (CAL). RESULTS The obtained results have shown clinical benefits in PD reduction and CAL gains at 3 months with the use of CUR as adjuvant therapy to SRP, both as an irrigant or photoantimicrobial, in comparison with SRP monotherapy. CONCLUSION Currently, there is evidence that treatment with CUR applied as irrigant or in conjunction with the blue LED as aPDT presents superior clinical results in the short term, for clinical periodontics parameters like as PD reduction and CAL gain, when compared to SRP monotherapy in the non-surgical treatment of periodontitis. However, these results cannot be proven in the long term.
Collapse
Affiliation(s)
- Eduardo Quintão Manhanini Souza
- Department of Diagnostic and Surgery, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
| | - Tiago Esgalha da Rocha
- Department of Diagnostic and Surgery, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
| | - Luan Felipe Toro
- Institute of Biosciences of Botucatu - IBB (UNESP), Botucatu, SP, Brazil.
| | | | | | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
| | - Daniela Atili Brandini
- Department of Diagnostic and Surgery, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
| | - Valdir Gouveia Garcia
- Latin American Institute of Dental Research and Education (ILAPEO), Curitiba, PR, Brazil.
| | - Letícia Helena Theodoro
- Department of Diagnostic and Surgery, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
| |
Collapse
|
23
|
Pérez-Pacheco CG, Fernandes NAR, Primo FL, Tedesco AC, Bellile E, Retamal-Valdes B, Feres M, Guimarães-Stabili MR, Rossa C. Local application of curcumin-loaded nanoparticles as an adjunct to scaling and root planing in periodontitis: Randomized, placebo-controlled, double-blind split-mouth clinical trial. Clin Oral Investig 2020; 25:3217-3227. [PMID: 33125518 DOI: 10.1007/s00784-020-03652-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Assess a single local application of curcumin-loaded nanoparticles as an adjunct to scaling and root planing (SRP) in nonsurgical periodontal treatment (NPT). MATERIALS AND METHODS Twenty healthy subjects with periodontitis received SRP+PLGA/PLA nanoparticles loaded with 50 μg of curcumin (N-Curc) or SRP+empty nanoparticles. Probing pocket depth (PPD), clinical attachment level (CAL), and bleeding on probing (BOP) were monitored at baseline, 30, 90, and 180 days. IL-1α, IL-6, TNFα, and IL-10 in the gingival crevicular fluid (GCF) were assessed by ELISA, and counts of 40 bacterial species were determined by DNA hybridization at baseline, 3, 7, and 15 days post-therapy. RESULTS PPD, CAL, and BOP were similarly and significantly improved in both experimental groups. There was no difference in GCF cytokine levels between experimental groups, although IL-6 was decreased at 3 days only in the N-Curc group. NPT reduced counts of red complex bacterial species in both groups. Veillonella Parvula counts increased significantly only in N-Curc group at 7 days, whereas Aggregatibacter actinomycetemcomitans counts increased significantly only in the control group from day 3 to day 15. CONCLUSION We conclude that a single local administration of nanoencapsulated curcumin in periodontally diseased sites had no additive benefits to NPT. CLINICAL RELEVANCE Our results showed that a single local application of curcumin-loaded nanoparticles associated with nonsurgical periodontal therapy did not improve clinical outcomes. Hence, our findings do not support the use of curcumin as an adjunct to nonsurgical periodontal therapy.
Collapse
Affiliation(s)
- Cindy Grace Pérez-Pacheco
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Natalie Ap Rodrigues Fernandes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Fernando Lucas Primo
- Department of Bioprocess and Biotechnology, Faculty of Pharmaceutical Sciences of Araraquara, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering- Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Emily Bellile
- Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Belen Retamal-Valdes
- Department of Periodontology and Oral Implantology, Dental Research Division, Universidade de Guarulhos - UNG, Sao Paulo, SP, Brazil
| | - Magda Feres
- Department of Periodontology and Oral Implantology, Dental Research Division, Universidade de Guarulhos - UNG, Sao Paulo, SP, Brazil
| | | | - Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
24
|
Comparison of different laser-based photochemical systems for periodontal treatment. Photodiagnosis Photodyn Ther 2019; 27:433-439. [PMID: 31319164 DOI: 10.1016/j.pdpdt.2019.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE The main aim in periodontitis treatment is to remove supragingival and subgingival biofilm. Mechanical treatment to eliminate pathogenic bacteria is limited by morphological conditions on the root surface. This study assessed the antibacterial effectiveness of different laser-based photochemical systems, particularly a novel curcumin-based option. METHODS Ninety-one titanium bars were inoculated with an artificial biofilm of common pathogenic periodontal bacteria and inserted into an artificial periodontal pocket model. The following groups (n = 13) were tested: 1, curcumin solution plus SLB laser irradiation (C + L; 445 nm, 0.6 W, 25% duty cycle, 100 Hz, 10 s); 2, curcumin solution (Cur); 3, dimethyl sulfoxide solution (DMSO); 4, SiroLaser Blue (SLB) - laser irradiation (445 nm, 0.6 W, 25% duty cycle, 100 Hz, 10 s); 5, antimicrobial photodynamic therapy (aPDT); 6, antimicrobial photothermal therapy (aPTT); 7, control. The samples were stored in Eppendorf tubes and analyzed microbiologically using quantitative real-time polymerase chain reaction (PCR). The main parameter for analyzing group differences was the total bacterial load. Statistical analysis was performed with nonparametric methods. RESULTS Statistically significant reductions in bacterial count were observed in all experimental groups (p < 0.05). The mean percentage reductions were as follows: SLB, 95.03%; aPDT, 83.91%; DMSO, 95.69%; C + L, 97.15%. No statistically significant differences in bacteria reduction were observed for laser alone (SLB), DMSO, or curcumin with or without additional laser irradiation. CONCLUSIONS The greatest antibacterial efficacy was observed in samples treated with aPTT. Using curcumin as a photosensitizing agent for 445 nm laser irradiation did not result in improved antibacterial effectiveness in comparison with laser alone.
Collapse
|
25
|
Boșca AB, Ilea A, Sorițău O, Tatomir C, Miklášová N, Pârvu AE, Mihu CM, Melincovici CS, Fischer-Fodor E. Modulatory effect of curcumin analogs on the activation of metalloproteinases in human periodontal stem cells. Eur J Oral Sci 2019; 127:304-312. [PMID: 31270880 DOI: 10.1111/eos.12625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Periodontitis progresses due to increased levels of active metalloproteinases (MMPs) and the imbalance between MMPs and their tissue inhibitors (TIMPs). Natural curcumin limits the lytic activity of MMPs but has low cellular uptake. Use of synthetic curcumin analogs could be a means of overcoming this limitation of treatment efficiency. Human periodontal stem cells were isolated from gingival tissue, gingival ligament fibers, periodontal ligament, and alveolar bone. The effect of five synthetic curcumin analogs was compared with that of natural curcumin by assessing cytotoxicity [by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay], the cellular uptake (by fluorometry), the proteolytic activities of MMP-2 and -9 (by zymography), and the levels of TIMP-1 (by ELISA). Our results indicated increased cytotoxicity of synthetic curcumins for doses between 100 and 250 μM. At a concentration of 10 μM, cellular uptake of synthetic curcumins varied depending on their chemical structure. The curcumin compounds modulated pro-MMP-2 levels and increased TIMP-1 production. There was no detectable synthesis of pro-MMP-9 and no activation of MMPs 2 and 9. Gingival tissue and gingival ligament fiber stem cells were most responsive to treatment, showing inverse correlations between pro-MMP-2 and TIMP-1 levels. In conclusion, synthetic curcumins influenced the balance between pro-MMP-2 and TIMP-1 in human periodontal stem cells in vitro, and this could open perspectives for their application as adjuvants in periodontal therapy.
Collapse
Affiliation(s)
- Adina B Boșca
- Department of Histology, Faculty of Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu' Cluj-Napoca, Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Oral Health and Dental Office Management, Faculty of Dental Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu' Cluj-Napoca, Cluj-Napoca, Romania
| | - Olga Sorițău
- Radiotherapy, Tumor and Radiobiology Laboratory, 'Ion Chiricuță' Institute of Oncology, Cluj-Napoca, Romania
| | - Corina Tatomir
- Radiotherapy, Tumor and Radiobiology Laboratory, 'Ion Chiricuță' Institute of Oncology, Cluj-Napoca, Romania
| | - Natalia Miklášová
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Alina E Pârvu
- Department of Physiopathology, Faculty of Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu' Cluj-Napoca, Cluj-Napoca, Romania
| | - Carmen M Mihu
- Department of Histology, Faculty of Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu' Cluj-Napoca, Cluj-Napoca, Romania
| | - Carmen S Melincovici
- Department of Histology, Faculty of Medicine, University of Medicine and Pharmacy 'Iuliu Hatieganu' Cluj-Napoca, Cluj-Napoca, Romania
| | - Eva Fischer-Fodor
- Radiotherapy, Tumor and Radiobiology Laboratory, 'Ion Chiricuță' Institute of Oncology, Cluj-Napoca, Romania.,Medfuture Research Center, University of Medicine and Pharmacy 'Iuliu Hatieganu' Cluj Napoca, Cluj Napoca, Romania
| |
Collapse
|
26
|
Asteriou E, Gkoutzourelas A, Mavropoulos A, Katsiari C, Sakkas LI, Bogdanos DP. Curcumin for the Management of Periodontitis and Early ACPA-Positive Rheumatoid Arthritis: Killing Two Birds with One Stone. Nutrients 2018; 10:nu10070908. [PMID: 30012973 PMCID: PMC6073415 DOI: 10.3390/nu10070908] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
We propose curcumin as a preventive measure to avoid/manage periodontitis (PD), and as a natural immunosuppressant for rheumatoid arthritis (RA). PD, mainly caused by Porphyromonas gingivalis forming biofilm and leading to tooth decay, is a major public health issue and a risk factor for the development of RA in humans. P. gingivalis is able to trigger experimental autoimmune arthritis in animal models and in humans can induce citrullinated peptides, which not only are a source of anti-citrullinated antibodies (ACPAs), but also participate in autoreactive responses and disease development. Curcumin appears to have efficient anti-bacterial activity against P. gingivalis infection and biofilm formation. In addition to antibacterial, anti-oxidant, and anti-inflammatory action, curcumin exerts unique immunosuppressant properties via the inhibition of Th17 pro-inflammatory responses and promotion of regulatory T cells, thus suppressing autoimmunity. We introduce curcumin as a natural product for the management of both PD and RA-related autoreactivity, possibly also as a preventive measure in early RA or individuals at high risk to develop RA.
Collapse
Affiliation(s)
- Eleni Asteriou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Athanasios Gkoutzourelas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Christina Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| |
Collapse
|
27
|
Xidaki D, Agrafioti P, Diomatari D, Kaminari A, Tsalavoutas-Psarras E, Alexiou P, Psycharis V, Tsilibary EC, Silvestros S, Sagnou M. Synthesis of Hydroxyapatite, β-Tricalcium Phosphate and Biphasic Calcium Phosphate Particles to Act as Local Delivery Carriers of Curcumin: Loading, Release and In Vitro Studies. MATERIALS 2018; 11:ma11040595. [PMID: 29649121 PMCID: PMC5951479 DOI: 10.3390/ma11040595] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 12/28/2022]
Abstract
The successful synthesis of hydroxyapatite (HA), β-Tricalcium phosphate (β-TCP) and two biphasic mixtures (BCPs) of the two was performed by means of wet precipitation. The resulting crystals were characterized and the BCP composition was analyzed and identified as 13% HA-87% TCP and 41% HA-59% TCP. All samples were treated with curcumin solutions, and the degree of curcumin loading and release was found to be proportional to the TCP content of the ceramic. No further cytotoxicity was observed upon MG-63 treatment with the curcumin-loaded ceramics. Finally, the alkaline phosphatase activity of the cells was found to increase with increasing content of TCP, which provides an encouraging proof of concept for the use of curcumin-loaded synthetic biomaterials in bone remodeling.
Collapse
Affiliation(s)
- Despoina Xidaki
- STEP@biomaterials PC, Department of Research & Development, TEPA "Lefkippos", Patriarchou Grigoriou & Neapoleos 27, 153 41 Agia Paraskevi, Athens, Greece.
| | - Panagiota Agrafioti
- Dental School, National and Kapodistrian University of Athens, Thivon 2, 115 27 Goudi, Athens, Greece.
| | - Dimitra Diomatari
- Dental School, National and Kapodistrian University of Athens, Thivon 2, 115 27 Goudi, Athens, Greece.
| | - Archontia Kaminari
- Institute of Biosciences & Application, NCSR "Demokritos", Patriarchou Grigoriou & Neapoleos 27, 153 41 Agia Paraskevi, Athens, Greece.
| | - Eleftherios Tsalavoutas-Psarras
- STEP@biomaterials PC, Department of Research & Development, TEPA "Lefkippos", Patriarchou Grigoriou & Neapoleos 27, 153 41 Agia Paraskevi, Athens, Greece.
| | - Polyxeni Alexiou
- Institute of Biosciences & Application, NCSR "Demokritos", Patriarchou Grigoriou & Neapoleos 27, 153 41 Agia Paraskevi, Athens, Greece.
| | - Vasilios Psycharis
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Patriarchou Grigoriou & Neapoleos 27, 153 41 Agia Paraskevi, Athens, Greece.
| | - Effie C Tsilibary
- STEP@biomaterials PC, Department of Research & Development, TEPA "Lefkippos", Patriarchou Grigoriou & Neapoleos 27, 153 41 Agia Paraskevi, Athens, Greece.
- Institute of Biosciences & Application, NCSR "Demokritos", Patriarchou Grigoriou & Neapoleos 27, 153 41 Agia Paraskevi, Athens, Greece.
| | - Spyridon Silvestros
- Dental School, National and Kapodistrian University of Athens, Thivon 2, 115 27 Goudi, Athens, Greece.
| | - Marina Sagnou
- STEP@biomaterials PC, Department of Research & Development, TEPA "Lefkippos", Patriarchou Grigoriou & Neapoleos 27, 153 41 Agia Paraskevi, Athens, Greece.
- Institute of Biosciences & Application, NCSR "Demokritos", Patriarchou Grigoriou & Neapoleos 27, 153 41 Agia Paraskevi, Athens, Greece.
| |
Collapse
|