1
|
Gu J, Zhang N, Jiang X, Zhu L, Lou Y, Sun S, Yin L, Liu J. The Olfactory Receptor Olfr25 Mediates Sperm Dysfunction Induced by Low-Dose Bisphenol A through the CatSper-Ca 2+ Signaling Pathway. TOXICS 2024; 12:442. [PMID: 38922122 PMCID: PMC11209571 DOI: 10.3390/toxics12060442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Bisphenol A (BPA), a typical endocrine disruptor, is known to have various adverse effects on the male reproductive system. However, the toxic effects and mechanisms of low-dose BPA have not yet been fully explored. In this study, male Kunming mice were orally administered low-dose BPA (0.03, 0.3 and 3 mg/kg/d) for ten consecutive weeks. Pathological sections of testicular tissue showed no significant morphological differences after BPA exposure. An analysis of the functional parameters of sperm revealed that exposure to low-dose BPA significantly decreased sperm motility, chemotaxis, and the acrosome reaction. An in vitro BPA exposure model combined with an omics data analysis showed that the olfactory receptor-related pathway was significantly enriched after BPA treatment. Subsequent experiments verified the reduced mRNA level of a novel olfactory receptor gene, Olfr25, in vivo and in vitro exposure models. Meanwhile, exposure to low-dose BPA reduced the intracellular calcium ion concentration and the mRNA levels of pore-forming subunits of the CatSper channel in sperm. Importantly, the knockdown of Olfr25 inhibited calcium ion levels and CatSper subunit expression in GC-2 cells. Olfr25 overexpression attenuated the BPA-induced downregulation of CatSper subunit expression in GC-2 cells. These findings indicate that Olfr25 might participate in low-dose BPA-induced sperm dysfunction by affecting the CatSper-Ca2+ signaling pathway. This study reveals a new mechanism underlying the effects of low-dose BPA on sperm function and provides a reference for assessing the safety of low-dose BPA exposure.
Collapse
Affiliation(s)
- Jing Gu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Ning Zhang
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Xiao Jiang
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Lei Zhu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Yixia Lou
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Shengqi Sun
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| | - Li Yin
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
- Chongqing Key Lab of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jinyi Liu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.G.); (N.Z.); (X.J.); (L.Z.); (Y.L.); (S.S.)
| |
Collapse
|
2
|
He Y, Wang B, Huang J, Zhang D, Yuan Y. Environmental pollutants and male infertility: Effects on CatSper. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116341. [PMID: 38653022 DOI: 10.1016/j.ecoenv.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Infertility is a growing health concern among many couples worldwide. Men account for half of infertility cases. CatSper, a sperm-specific Ca2+ channel, is expressed on the cell membrane of mammalian sperm. CatSper plays an important role in male fertility because it facilitates the entry of Ca2+ necessary for the rapid change in sperm motility, thereby allowing it to navigate the hurdles of the female reproductive tract and successfully locate the egg. Many pollutants present in the environment have been shown to affect the functions of CatSper and sperm, which is a matter of capital importance to understanding and solving male infertility issues. Environmental pollutants can act as partial agonists or inhibitors of CatSper or exhibit a synergistic effect. In this article, we briefly describe the structure, functions, and regulatory mechanisms of CatSper, and discuss the body of literature covering the effects of environmental pollutants on CatSper.
Collapse
Affiliation(s)
- Yuxin He
- Nanchang University Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang 330031, China
| | - Binhui Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Jian Huang
- Clinical Medical Experimental Center, Nanchang University, Nanchang 330031, China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang 330006, China
| | - Dalei Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang 330006, China
| | - Yangyang Yuan
- Clinical Medical Experimental Center, Nanchang University, Nanchang 330031, China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
3
|
Ke S, Luo T. The Chemosensing Role of CatSper in Mammalian Sperm: An Updated Review. Curr Issues Mol Biol 2023; 45:6995-7010. [PMID: 37754226 PMCID: PMC10528052 DOI: 10.3390/cimb45090442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
After sperm enter the female reproductive tract, the physicochemical and biochemical microenvironment undergoes significant changes. In particular, the large changes in various ions encountered by sperm may alter the physiology of sperm, ultimately compromising capacitation and fertilization. Thus, the rapid response to environmental variations is vital for sperm functions. For example, Calcium, the most crucial ion for sperm functions, enters into sperm via Ca2+ permeable ion channels. The cation channel of sperm (CatSper) is a sperm-specific, pH-sensitive, and Ca2+-permeable ion channel. It is responsible for the predominant Ca2+ entry in mammalian sperm and is involved in nearly every event of sperm to acquire fertilizing capability. In addition, CatSper also serves as a pivotal polymodal chemosensor in mammalian sperm by responding to multiple chemical cues. Physiological chemicals (such as progesterone, prostaglandins, β-defensins, and odorants) provoke Ca2+ entry into sperm by activating CatSper and thus triggering sperm functions. Additionally, synthetic and natural chemicals (such as medicines, endocrine disrupting chemicals, drugs of abuse, and antioxidants) affect sperm functions by regulating CatSper-dependent Ca2+ signaling. Therefore, understanding the interactions between CatSper and extracellular ligands sheds light on the mechanisms underlying male infertility and offers innovative diagnostic and treatment approaches. This underscores the importance of CatSper as a crucial regulatory target in male reproduction, linking sperm function with the extracellular environment. In conclusion, this review comprehensively summarizes the relevant studies describing the environmental factors that affect CatSper in humans and rodents.
Collapse
Affiliation(s)
- Sulun Ke
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
- Queen Mary School, Medical College, Nanchang University, Nanchang 330031, China
| | - Tao Luo
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang University, Nanchang 330006, China
| |
Collapse
|
4
|
Phytomedicinal therapeutics for male infertility: critical insights and scientific updates. J Nat Med 2022; 76:546-573. [PMID: 35377028 DOI: 10.1007/s11418-022-01619-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Infertility is a significant cause of anxiety, depression, and social stigma among couples and families. In such cases, male reproductive factors contribute widely to the extent of 20-70%. Male infertility is a multifactorial disease with several complications contributing to its diagnosis. Although its management encompasses both modern and traditional medicine arenas, the first line of treatment, adopted by most males, focuses on the reasonably successful medicinal plant-based conventional therapies. Phyto-therapeutics, which relies on active ingredients from traditionally known herbs, influences sexual behavior and male fertility factors. The potency of these phyto-actives depends on their preparation methods and forms of consumption, including decoctions, extracts, semi-purified compounds, etc., as inferred from in vitro and in vivo (laboratory animal models and human) studies. The mechanisms of action therein involve the testosterone pathway for stimulation of spermatogenesis, reduction of oxidative stress, inhibition of inflammation, activation of signaling pathways in the testes [extracellular-regulated kinase (ERK)/protein kinase B(PKB)/transformation of growth factor-beta 1(TGF-β1)/nuclear factor kappa-light-chain-enhancer of activated B cells NF-kB signaling pathways] and mediation of sexual behavior. This review critically focuses on the medicinal plants and their potent actives, along with the biochemical and molecular mechanisms that modulate vital pathways associated with the successful management of male infertility. Such intrinsic knowledge will significantly further studies on medicinal plants that improve male reproductive health.
Collapse
|
5
|
Jazayeri O, Farahmand Araghi S, Aghajanzadeh TA, Mir Moammadrezaei F. Up-regulation of Arl4a gene expression by broccoli aqueous extract is associated with improved spermatogenesis in mouse testes. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2021; 41:706-720. [PMID: 34936255 PMCID: PMC8768486 DOI: 10.7705/biomedica.5962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/15/2021] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Broccoli (Brassica oleracea) is well known for its properties as an anticancer, antioxidant, and scavenger of free radicals. However, its benefits in enhancing spermatogenesis have not been well established. OBJECTIVE To study broccoli aqueous extract effects on sperm factors and the expression of genes Catsper1, Catsper2, Arl4a, Sox5, and Sox9 in sperm factors in mice. MATERIAL AND METHODS Male mice were divided randomly into six groups: (1) Control; (2) cadmium (3 mg/kg of mouse body weight); (3) orally treated with 200 μl broccoli aqueous extract (1 g ml-1); (4) orally treated with 400 μl of broccoli aqueous extract; (5) orally treated with 200 broccoli aqueous extract plus cadmium, and (6) orally treated with 400 μl of broccoli aqueous extract plus cadmium. We analyzed the sperms factors and Catsper1, Catsper2, Arl4a, Sox5, and Sox9 gene expression. RESULTS An obvious improvement in sperm count and a slight enhancement in sperm motility were observed in mice treated with broccoli extract alone or with cadmium. Sperm viability was reduced by broccoli extract except for the 200 μl dose with cadmium, which significantly increased it. Interestingly, Arl4a gene expression increased in the 400 μl broccoli-treated group. Likewise, the Arl4a mRNA level in mice treated with cadmium and 200 μl of broccoli extract was higher than in the cadmium-treated mice. Furthermore, broccoli extract enhanced the mRNA level of Catsper2 and Sox5 genes in mice treated with 200 μl and 400 μl broccoli extract plus cadmium compared with the group treated solely with cadmium. CONCLUSION The higher sperm count in broccoli-treated mice opens the way for the development of pharmaceutical products for infertile men.
Collapse
Affiliation(s)
- Omid Jazayeri
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
| | - Setareh Farahmand Araghi
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
| | - Tahereh A Aghajanzadeh
- Department of Plant Sciences, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
| | | |
Collapse
|
6
|
Sanad NH, Abbas HR, Yaseen AA, Habeeb IA, Alsalim HA. Hormonal, Histological, and Comparative Study of the Effect of Pure Ginseng on Testicular Function in the Breeding/Non-Breeding Season of Rams in Basrah. ARCHIVES OF RAZI INSTITUTE 2021; 76:1519-1535. [PMID: 35355744 PMCID: PMC8934070 DOI: 10.22092/ari.2021.355554.1697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/17/2021] [Indexed: 01/24/2023]
Abstract
This study aimed to investigate the effect of the administration of powdered Panax ginseng as a dietary supplement on testosterone concentration, spermatogenesis stimulating hormone, interstitial cell-stimulating hormone levels, sperms morphological characteristics, testis histological traits, and testicular size in the breeding and non-breeding season in adult rams. In total, 20 adult rams were included and randomly divided into three groups. The first group of adult rams (n=8) was subdivided into two subgroups of four rams (Sub-G1-B and Sub-G2-B). TheSub-G1-B and Sub-G2-B were fed 2 and 5 g of P. ginseng once a day, respectively, for 90 days during the breeding season. The second group of adult rams (n=8) was subdivided into two subgroups of four rams (Sub-G1-NB and Sub-G2-NB). The Sub-G1-NB and Sub-G2-NB were fed 2 and 5 g of P. ginseng once a day, respectively, for 90 days during the non-breeding season. The third group of adult rams (n=4) was considered the control group two times (in and out of the season). The results showed that the testosterone concentration and gonad protective and interstitial cell-stimulating hormone levels increased significantly (P<0.05) in both the experimental groups that received ginseng supplementation, compared to the control group in and out of the breeding season. The evaluation of sperm morphometric parameters, such as total sperm count, total motility, and progressive motility, showed superiority in improving the above-mentioned parameters. However, the total immotile sperms and non-progressive sperms underwent a significant decrease (P<0.05) in both experimental groups of ginseng supplemented, compared to the control group in and out of season. The angiogenesis of the seminiferous tubules increased significantly (P<0.05) in both experimental groups. Through a microscopic examination, the recorded data showed a significant increase in the population of spermatogonial stem cells as well as primary and secondary spermatocytes in both experimental groups. Values of testicular diameter showed a significant increase (P<0.05) after a period of 75 and 90 days following the initiation of treatments in both experimental groups, compared to the control group in and out of the season. It can be concluded that P. ginseng has some beneficial effects on the antioxidant status of the semen, the morphometric parameters, and other critical traits of sperm and testicles which are the important factors in male fertility.
Collapse
Affiliation(s)
- N. H Sanad
- Department of Surgery and Obstetric/Theriogenology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - H. R Abbas
- Department of Surgery and Obstetric/Theriogenology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - A. A Yaseen
- Department of Surgery and Obstetric/Theriogenology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - I. A Habeeb
- Department of Surgery and Obstetric/Theriogenology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - H. A Alsalim
- Department of Surgery and Obstetric/Theriogenology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| |
Collapse
|
7
|
Jin ZR, Fang D, Liu BH, Cai J, Tang WH, Jiang H, Xing GG. Roles of CatSper channels in the pathogenesis of asthenozoospermia and the therapeutic effects of acupuncture-like treatment on asthenozoospermia. Am J Cancer Res 2021; 11:2822-2844. [PMID: 33456575 PMCID: PMC7806476 DOI: 10.7150/thno.51869] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Idiopathic asthenozoospermia (iAZS) is one of the major causes of male infertility and has no effective therapeutic treatment. Understanding the potential mechanisms that cause it may be helpful in seeking novel targets and treatment strategies for overcoming the problem of low sperm motility in iAZS individuals. Methods: Computer-assisted semen analysis (CASA) was utilized to assess the sperm motility. RT-qPCR, Western blot, immunofluorescence staining, and calcium imaging analysis were performed to examine the expression and function of CatSper channels. Hyperactivation and acrosome reaction were used to evaluate the functional characteristics of epididymal sperm. In vivo fertility assay was applied to determine the fertility of rats. CatSper1 knockdown and overexpression experiments were performed to confirm the roles of CatSper channels in the pathogenesis of iAZS and the therapeutic effects of electroacupuncture (EA) treatment on AZS model rats. Results: Here, we reported a functional down-regulation of CatSper channel from CatSper1 to CatSper 4 in the sperm of both iAZS patients and ornidazole (ORN)-induced AZS model rats, and an impaired sperm function characterized by a reduction of protein tyrosine phosphorylation, hyperactivation, and acrosome reaction in the epididymal sperm of AZS rats. Knockdown of CatSper1 in the testis tissues is sufficient to induce AZS in normal rats, and this action was validated by the reversal effects of CatSper1 overexpression. Transcutaneous electrical acupoint stimulation (TEAS) and electroacupuncture (EA) at 2 Hz frequency improve the sperm motility via enhancing the functional expression of CatSper channels in the sperm. Gene silencing CatSper1 in the sperm abolishes the therapeutic effects of 2 Hz-EA treatment on AZS rats. Conclusions: We conclude that a functional down-regulation of CatSper channel in the sperm may be a contributor or a downstream indicator for a portion of AZS, especially iAZS, while 2 Hz-TEAS or EA treatment has a therapeutic effect on iAZS through inducing the functional up-regulation of CatSper channels in the sperm. This study provides a novel mechanism for the pathogenesis of some AZS especially iAZS, and presents a potential therapeutic target of CatSper for iAZS treatment. Acupuncture treatment like TEAS may be used as a promising complementary and alternative medicine (CAM) therapy for male infertility caused by iAZS in clinical practice.
Collapse
|
8
|
Sadeghi S, Jalali M, Nikravesh MR, Sankian M. Effect of experimental hyperthyroidism on CatSper1 and CatSper2 genes expression in the seminiferous tubules of BALB/c mice: An experimental study. Int J Reprod Biomed 2020; 18:591-604. [PMID: 32923926 PMCID: PMC7457153 DOI: 10.18502/ijrm.v13i8.7501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/08/2019] [Accepted: 01/28/2020] [Indexed: 11/29/2022] Open
Abstract
Background CATSPER 1 (Cation Channel Sperm Associated 1) and CATSPER2 channels have an important role in sperm motility. In this study, the effects of hyperthyroidism on Catsper1 and 2 genes of seminiferous tubules in mice testes were investigated. Objective The present study was conducted to investigate the effect of hyperthyroidism on the expression of CATSPER1 and CATSPER2 genes in the seminiferous tubules of mice. Materials and Methods This study was conducted on 20 BALB/C male mice divided into two groups - experimental and control. The experimental group was administered with 500 mg/l levothyroxine (L-thyroxine) liquid solution for two months for inducing hyperthyroidism, which was confirmed by radioimmunoassay. On the other hand, the control group was kept in animal houses under a normal condition. The implementation of real-time polymerase chain reaction and immunohistochemical studies was accomplished after the removal of the testes of the mice under anesthesia induced by chloroform. Results Results showed that there was no significant difference in CATSPER1 (p = 0.45) and CATSPER2 (p = 0.34) gene expression between groups. At the same time, the color intensity showed no significant enhancement in the hyperthyroidism group (CATSPER1 p = 0.17 and CATSPER2 p = 0.22) as compared to the control group. Conclusion Considering the key role of CATSPER in the molecular structure of the sperm, our findings showed that the hyperactivity of the thyroid gland has no significant effects on the function of these components. Therefore, it might be concluded that hyperthyroidism has no considerable effects on the seminiferous tubules.
Collapse
Affiliation(s)
- Saeed Sadeghi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahdi Jalali
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohamad Reza Nikravesh
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
9
|
Shengjing Capsule Improves Spermatogenesis through Upregulating Integrin α6/ β1 in the NOA Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8494567. [PMID: 31534468 PMCID: PMC6724431 DOI: 10.1155/2019/8494567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023]
Abstract
Objective To evaluate the therapeutic effect of Shengjing capsules on nonobstructive azoospermia (NOA) in the rat model. Methods Twenty-five male Sprague–Dawley rats were randomly divided into five groups as follows (n=5 per group): normal group, NOA group, and three Shengjing capsule treatment groups (low-dose, medium-dose, and high-dose groups, respectively). HE staining and semen smear were performed to assess sperm quality. The expression levels of PI3K/AKT and integrin α6/β1 were measured by qRT-PCR and western blot analyses. Results In the NOA group, almost all of the seminiferous tubules were vacuolated with a thin layer of basal compartment containing some spermatogonial stem cells. The counts of sperms in the NOA group were strongly lower than those of the normal group (P=0.0001). The expression of PI3K/AKT and integrin α6/β1 was scarcely expressed in the NOA group. All indexes mentioned above were significantly different from those of the medium- and high-dose groups (P=0.001, all). The sperm count of rats treated with Shengjing capsules was significantly higher than that of the NOA group (P=0.0001). The rats of Shengjing capsule groups had more layers of spermatogonial stem cells and spermatocytes, and some had intracavitary sperms. Conclusions Shengjing capsules may be a promising therapeutic medicine for NOA. The underlying mechanisms might involve activating SSCs by upregulating the integrin α6/β1 expression via the PI3K/AKT pathway.
Collapse
|
10
|
Plant-Derived Supplements for Sexual Health and Problems, Part 2: Further Evidence for Specific Herbal Effects. CURRENT SEXUAL HEALTH REPORTS 2019. [DOI: 10.1007/s11930-019-00204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Ganjkhani M, Nourozi S, Bigonah R, Rostami A, Shokri S. Ameliorating impacts of ginseng on the apoptosis of spermatogenic cells and sperm quality in temporal lobe epilepsy rat model treated with valproate. Andrologia 2019; 51:e13348. [DOI: 10.1111/and.13348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 01/02/2023] Open
Affiliation(s)
- Mahin Ganjkhani
- Department of Physiology and Pharmacology, School of Medicine Zanjan University of Medical Sciences Zanjan Iran
| | - Saeed Nourozi
- Department of Physiology and Pharmacology, School of Medicine Zanjan University of Medical Sciences Zanjan Iran
| | - Reza Bigonah
- Department of Physiology and Pharmacology, School of Medicine Zanjan University of Medical Sciences Zanjan Iran
| | - Ali Rostami
- Department of Physiology and Pharmacology, School of Medicine Zanjan University of Medical Sciences Zanjan Iran
| | - Saeed Shokri
- Department of Anatomical Sciences, School of Medicine Zanjan University of Medical Sciences Zanjan Iran
| |
Collapse
|
12
|
Alipour F, Jalali M, Nikravesh MR, Fazel A, Sankian M, Khordad E. Assessment of sperm morphology, chromatin integrity, and catSper genes expression in hypothyroid mice. ACTA BIOLOGICA HUNGARICA 2018; 69:244-258. [PMID: 30257580 DOI: 10.1556/018.68.2018.3.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is an evident relationship between the fertilizing capacity of sperm and the normal morphology, quality chromatin, and motility of sperm. It is well known that thyroid hormones are the important regulators of testicular function. A correlation was found between the hypothyroidism and sperm damages. The present study was conducted to investigate the effects of hypothyroidism on sperm morphology, chromatin quality, and motility. For this purpose, 20 male mice were divided into the control and the hypothyroid groups that received 0.05% 6-n-propyl-2-thiouracil (PTU) for 35 days. Sperm morphology with Papanicolaou staining and sperm chromatin quality with both Aniline Blue (AB) and Toluidine blue (TB) staining were assessed. Besides, immunohistochemistry and real-time PCR were performed to evaluate the changes of cation sperm channel (CatSper) genes. A significant increase in the sperm chromatin condensation was found in the hypothyroid mice compared to the control mice (p < 0.05). Furthermore, a significant decrease was observed in the morphology of normal sperm in hypothyroid mice compared to the controls (p < 0.05). The results showed that Hypothyroidism could downregulate the expression of CatSper genes. Immunohistochemical data confirmed the real time-PCR results. Furthermore, the results showed that hypothyroidism could adversely affect sperm morphology, sperm chromatin condensation, and CatSper gene expression in mice and these abnormalities may be related to the excessive production of reactive oxygen species (ROS) in a hypothyroid state.
Collapse
Affiliation(s)
- Fatemeh Alipour
- Department of Anatomy and Cellular Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Jalali
- Department of Anatomy and Cellular Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Nikravesh
- Department of Anatomy and Cellular Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Fazel
- Department of Anatomy and Cellular Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Bou-Ali Research Institute, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Khordad
- Department of Anatomy and Cellular Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Srivastav A, Changkija B, Sharan K, Nagar GK, Bansode FW. Influence of antifertility agents Dutasteride and Nifedipine on CatSper gene level in epididymis during sperm maturation in BALB/c mice. Reproduction 2018; 155:347-359. [PMID: 29434054 DOI: 10.1530/rep-17-0664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/05/2018] [Indexed: 11/08/2022]
Abstract
Calcium (Ca2+) signaling is critical for successful fertilization. In spermatozoa, capacitation, hyperactivation of motility and the acrosome reaction are all mediated by increases in intracellular Ca2+ through CatSper (sperm-specific cation channel). The CatSper channel complex contains four pore-forming α subunits (CatSper1-4) and five accessory subunits called β, δ, ε, γ and ζ. Genetic deletion of any of the four CatSper genes in mice results in loss of hyperactivated motility and male infertility. Despite their vital role in male fertility, almost very little is known about influence of antifertility agents on CatSper gene expression in epididymis and epididymal spermatozoa. Therefore, we performed quantitative real-time qPCR analysis for CatSper expression in the epididymis and epididymal sperm of BALB/c mice after treatment with Dutasteride (DS), a dual 5-α reductase inhibitor and Nifedipine (NF) a calcium channel blocker as positive control. We observed that treatment with antifertility agents Dutasteride and Nifedipine induced significant decreases in the caput and cauda epididymal sperm counts, motility and fertility which could partly be attributed to alteration in the normal morphology of the sperm associated with downregulation/upregulation of CatSper mRNAs in epididymis and epididymal spermatozoa of male BALB/c mice. These can be explained on the basis of interference with mechanisms affecting calcium ion signaling resulting in changes in intracellular calcium required for sperm activity, finally affecting sperm maturation and fertility of male BALB/c mice. These studies provide some novel avenues for developing new male contraceptives in future.
Collapse
Affiliation(s)
- Archana Srivastav
- Division of EndocrinologyCentral Drug Research Institute, Lucknow, India
| | | | - Kunal Sharan
- Division of EndocrinologyCentral Drug Research Institute, Lucknow, India
| | - Geet Kumar Nagar
- Division of EndocrinologyCentral Drug Research Institute, Lucknow, India
| | - Falgun W Bansode
- Division of EndocrinologyCentral Drug Research Institute, Lucknow, India
| |
Collapse
|
14
|
Sun XH, Zhu YY, Wang L, Liu HL, Ling Y, Li ZL, Sun LB. The Catsper channel and its roles in male fertility: a systematic review. Reprod Biol Endocrinol 2017; 15:65. [PMID: 28810916 PMCID: PMC5558725 DOI: 10.1186/s12958-017-0281-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
The Catsper channel is a sperm-specific, Ca2+-permeable, pH-dependent, and low voltage-dependent channel that is essential for the hyperactivity of sperm flagellum, chemotaxis towards the egg, capacitation and acrosome reaction. All of these physiological events require calcium entry into sperm cells. Remarkably, Catsper genes are exclusively expressed in the testis during spermatogenesis, and are sensitive to ion channel-induced pH change, such as NHEs, Ca2+ATPase, K+ channel, Hv1 channel and HCO3- transporters. Furthermore, the Catsper channel is regulated by some physiological stimulants, such as progesterone, cyclic nucleotides (e.g., cAMP, cGMP), zona pellucida (ZP) glycoproteins and bovine serum albumin (BSA). All of these factors normally stimulate Ca2+ entry into sperm through the Catsper channel. In addition, the Catsper channel may be a potential target for male infertility treatment or contraception. This review will focus on the structure, functions, regulation mechanisms and medicinal targets of the Catsper channel.
Collapse
Affiliation(s)
- Xiang-hong Sun
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Ying-ying Zhu
- 0000 0001 0455 0905grid.410645.2Department of pharmacy, College of pharmacy of Qingdao University, Qingdao, China
| | - Lin Wang
- grid.412521.1Department of clinical laboratory, the affiliated hospital of Qingdao University Medical College, Qingdao, China
| | - Hong-ling Liu
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Yong Ling
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Zong-li Li
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Li-bo Sun
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| |
Collapse
|
15
|
Eskandari M, Ghalyanchi Langeroudi A, Zeighami H, Rostami A, Kazemi M, Eyni H, Shokri S. Co-administration of ginseng and ciprofloxacin ameliorates epididymo-orchitis induced alterations in sperm quality and spermatogenic cells apoptosis following infection in rats. Andrologia 2016; 49. [DOI: 10.1111/and.12621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- M. Eskandari
- Department of Physiology; Faculty of Medicine; Zanjan University of Medical Sciences; Zanjan Iran
| | - A. Ghalyanchi Langeroudi
- Department of Physiology; Faculty of Medicine; Zanjan University of Medical Sciences; Zanjan Iran
| | - H. Zeighami
- Department of Microbiology; Faculty of Medicine; Zanjan University of Medical Sciences; Zanjan Iran
| | - A. Rostami
- Department of Physiology; Faculty of Medicine; Zanjan University of Medical Sciences; Zanjan Iran
| | - M. Kazemi
- Department of Anatomical Sciences; Faculty of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - H. Eyni
- Department of Anatomical Sciences; Faculty of Medicine; Tarbiat Modares University; Tehran Iran
| | - S. Shokri
- Department of Anatomical Sciences; Faculty of Medicine; Zanjan University of Medical Sciences; Zanjan Iran
| |
Collapse
|
16
|
Astragalus membranaceus augment sperm parameters in male mice associated with cAMP-responsive element modulator and activator of CREM in testis. J Tradit Complement Med 2015; 6:294-8. [PMID: 27419096 PMCID: PMC4936768 DOI: 10.1016/j.jtcme.2015.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/10/2015] [Accepted: 10/07/2015] [Indexed: 12/13/2022] Open
Abstract
Astragalus membranaceus BUNGE (AM; huáng qí) has been widely used as a medicinal herb for different kinds of diseases. AM treatment in vitro enhance sperm motility and ameliorates testicular toxicity, it has demonstrated the ability as a potential treatment for male infertility. In order to gain further insights on the molecular understanding of how AM enhances spermatogenesis, this study investigated whether AM has an affect on sperm parameters associated with cAMP response element modulator (CREM) and activator of CREM in testis (ACT) expression. Five-week-old male ICR mice were divided into four groups; control group and three different concentrations of AM treated groups. Each group was treated for 5 days a week for 5 weeks. Testis samples were collected for real time quantitative PCR and western blot analysis. Epididymis was taken out and used for sperm analysis using the computer assisted semen analysis (CASA) system. To facilitate expression of genes required for spermatogenesis, it is controlled by fine-tuning of CREM and its coactivator, ACT. AM treatment promotes CREM and ACT mRNA expression and also protein expression compared to control. AM enhances sperm values such as sperm count and motility compared to control. Overall, the study highlights, the ability of AM to increases CREM and ACT expression to facilitate sperm development and semen quality.
Collapse
|
17
|
Tamburrino L, Marchiani S, Vicini E, Muciaccia B, Cambi M, Pellegrini S, Forti G, Muratori M, Baldi E. Quantification of CatSper1 expression in human spermatozoa and relation to functional parameters. Hum Reprod 2015; 30:1532-44. [PMID: 25983333 DOI: 10.1093/humrep/dev103] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/20/2015] [Indexed: 01/03/2023] Open
Abstract
STUDY QUESTION Is CatSper1 expression in human spermatozoa related to semen parameter values and sperm functions? SUMMARY ANSWER CatSper1 expression is positively related to progressive and hyperactivated (HA) motility, [Ca(2+)]i responsiveness to progesterone but not the acrosome reaction (AR). WHAT IS KNOWN ALREADY The role of cationic channel of sperm (CatSper) in sperm functions is clear in animal models but less defined in human sperm cells. Current knowledge is mostly based on low specificity CatSper inhibitors showing agonistic and toxic effects on human spermatozoa and is thus of little help in clarifying the role of the CatSper channel in human sperm functions. STUDY DESIGN, SIZE, DURATION CatSper1 protein expression was evaluated in 115 men undergoing semen analysis for couple infertility. CatSper1 expression was related to routine semen parameters, motility kinematic parameters and basal and progesterone-stimulated [Ca(2+)]i and the AR. PARTICIPANTS/MATERIALS, SETTING, METHODS CatSper1 expression was evaluated (n = 85 normozoospermic, n = 30 asthenozoospermic patients) by immunofluorescence coupled to flow cytometry leading to quantitative measurement of the percentage of ejaculated sperm cells expressing the protein. Semen analysis was evaluated according to World Health Organization guidelines. Kinematic parameters were evaluated by a computer-aided sperm analysis system. [Ca(2+)]i was measured by a spectrofluorimetric method in fura-2-loaded spermatozoa. The AR was evaluated in live sperm cells by fluorescent-labeled lectin. MAIN RESULTS AND THE ROLE OF CHANCE CatSper1 protein expression in spermatozoa was reduced in asthenozoospermic men (mean ± SD: 53.0 ± 15.5%, n = 30 versus 67.9 ± 17.1% in normozoospermic, n = 85, P < 0.01) and was significantly correlated with progressive (r = 0.36, P < 0.001), total (r = 0.35, P < 0.001) and HA (r = 0.41, P < 0.005) motility. In addition to a higher percentage of spermatozoa not expressing CatSper1, asthenozoospermic men showed a large number of spermatozoa with immunofluorescent signal localized outside the principal piece compared with those in normozoospermia. A significant positive correlation was found between CatSper1 protein expression and the increase of [Ca(2+)]i in response to progesterone (r = 0.36, P < 0.05, n = 40) but not with basal [Ca(2+)]i. No correlation was found with the AR, either basal or in response to progesterone. LIMITATIONS, REASONS FOR CAUTION The study is partly descriptive. Furthermore, we cannot rule out the possibility that some round cells remain after a single round of 40% density gradient centrifugation or that this step may have removed some defective or slow swimming sperm, and therefore this preparation may not be representative of the entire sperm sample. Although our data suggest that CatSper1 may be a useful marker for infertility, and a possible contraceptive target, any clinical application is limited without further research. WIDER IMPLICATIONS OF THE FINDINGS Our results demonstrate an association of CatSper1 expression with human sperm progressive and HA motility and provide preliminary evidence that lack of expression or mislocalization of CatSper1 in spermatozoa may be involved in the pathogenesis of asthenozoospermia. However, mechanistic studies are needed to confirm that the correlations between CatSper1 expression and sperm functions are causative. STUDY FUNDING/COMPETING INTERESTS Supported by grants from Ministry of University and Scientific Research (PRIN project to E.B. and FIRB project to S.M.) and by Regione Toscana (to G.F.). L.T. was recipient of a grant from Accademia dei Lincei (Rome, Italy). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- L Tamburrino
- Department of Biomedical Experimental and Clinical Sciences, Center of Excellence DENOthe, University of Florence, Viale Pieraccini 6, Florence I-50139, Italy
| | - S Marchiani
- Department of Biomedical Experimental and Clinical Sciences, Center of Excellence DENOthe, University of Florence, Viale Pieraccini 6, Florence I-50139, Italy
| | - E Vicini
- Fondazione Pasteur Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Italy
| | - B Muciaccia
- Fondazione Pasteur Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Italy
| | - M Cambi
- Department of Biomedical Experimental and Clinical Sciences, Center of Excellence DENOthe, University of Florence, Viale Pieraccini 6, Florence I-50139, Italy
| | - S Pellegrini
- Centro Procreazione Assistita 'Demetra' of Florence, Via Caccini 18, Florence I-50139, Italy
| | - G Forti
- Department of Biomedical Experimental and Clinical Sciences, Center of Excellence DENOthe, University of Florence, Viale Pieraccini 6, Florence I-50139, Italy
| | - M Muratori
- Department of Biomedical Experimental and Clinical Sciences, Center of Excellence DENOthe, University of Florence, Viale Pieraccini 6, Florence I-50139, Italy
| | - E Baldi
- Department of Biomedical Experimental and Clinical Sciences, Center of Excellence DENOthe, University of Florence, Viale Pieraccini 6, Florence I-50139, Italy
| |
Collapse
|